Turbulent Intensity in Supersonic Mixing Transition by Streamwise Vortices –Fluctuation Measurements by Hot-wire Anemometer and PIV–

Author(s):  
Shoji SAKAUE ◽  
Mayu KAMATA ◽  
Takakage ARAI
1976 ◽  
Vol 77 (3) ◽  
pp. 473-497 ◽  
Author(s):  
L. J. S. Bradbury

This paper describes an investigation into the response of both the pulsed-wire anemometer and the hot-wire anemometer in a highly turbulent flow. The first part of the paper is concerned with a theoretical study of some aspects of the response of these instruments in a highly turbulent flow. It is shown that, under normal operating conditions, the pulsed-wire anemometer should give mean velocity and longitudinal turbulent intensity estimates to an accuracy of better than 10% without any restriction on turbulence level. However, to attain this accuracy in measurements of turbulent intensities normal to the mean flow direction, there is a lower limit on the turbulent intensity of about 50%. An analysis is then carried out of the behaviour of the hot-wire anemometer in a highly turbulent flow. It is found that the large errors that are known to develop are very sensitive to the precise structure of the turbulence, so that even qualitative use of hot-wire data in such flows is not feasible. Some brief comments on the possibility of improving the accuracy of the hot-wire anemometer are then given.The second half of the paper describes some comparative measurements in the highly turbulent flow immediately downstream of a normal flat plate. It is shown that, although it is not possible to interpret the hot-wire results on their own, it is possible to calculate the hot-wire response with a surprising degree of accuracy using the results from the pulsed-wire anemometer. This provides a rather indirect but none the less welcome check on the accuracy of the pulsed-wire results, which, in this very highly turbulent flow, have a certain interest in their own right.


1965 ◽  
Vol 32 (4) ◽  
pp. 721-734 ◽  
Author(s):  
Gunnar Heskestad

Results from hot-wire measurements in a plane turbulent jet of air are reported. The jet was found to be approximately self-preserving sufficiently far downstream where measurements of intermittency and data for calculating the energy balance of the turbulent motion were obtained. Measurements were also made of the effect of the jet speed (assumed equivalent to a Reynolds-number effect for the low Mach numbers used) on the centerline development of turbulent intensity and the flatness factor of the velocity derivative at a fixed downstream centerline location.


1962 ◽  
Vol 29 (3) ◽  
pp. 554-558 ◽  
Author(s):  
W. G. Rose

An equation is obtained for the instantaneous response of a constant-temperature hot-wire anemometer having a linearized output. The result includes the second-order effects of variations in fluid temperature and in flow direction. Corrected equations for outputs in terms of mean velocity, turbulent-intensity components, and shear stress are derived from the instantaneous response.


Sign in / Sign up

Export Citation Format

Share Document