scholarly journals Deficiency in NOD Antigen-Presenting Cell Function May Be Responsible for Suboptimal CD4+CD25+ T-Cell-Mediated Regulation and Type 1 Diabetes Development in NOD Mice

Diabetes ◽  
2006 ◽  
Vol 55 (7) ◽  
pp. 2098-2105 ◽  
Author(s):  
P. Alard ◽  
J. N. Manirarora ◽  
S. A. Parnell ◽  
J. L. Hudkins ◽  
S. L. Clark ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Huang ◽  
Qiyuan Tan ◽  
Ningwen Tai ◽  
James Alexander Pearson ◽  
Yangyang Li ◽  
...  

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells. BDC2.5 T cells in BDC2.5 CD4+ T cell receptor transgenic Non-Obese Diabetic (NOD) mice (BDC2.5+ NOD mice) can abruptly invade the pancreatic islets resulting in severe insulitis that progresses rapidly but rarely leads to spontaneous diabetes. This prevention of diabetes is mediated by T regulatory (Treg) cells in these mice. In this study, we investigated the role of interleukin 10 (IL-10) in the inhibition of diabetes in BDC2.5+ NOD mice by generating Il-10-deficient BDC2.5+ NOD mice (BDC2.5+Il-10-/- NOD mice). Our results showed that BDC2.5+Il-10-/- NOD mice displayed robust and accelerated diabetes development. Il-10 deficiency in BDC2.5+ NOD mice promoted the generation of neutrophils in the bone marrow and increased the proportions of neutrophils in the periphery (blood, spleen, and islets), accompanied by altered intestinal immunity and gut microbiota composition. In vitro studies showed that the gut microbiota from BDC2.5+Il-10-/- NOD mice can expand neutrophil populations. Moreover, in vivo studies demonstrated that the depletion of endogenous gut microbiota by antibiotic treatment decreased the proportion of neutrophils. Although Il-10 deficiency in BDC2.5+ NOD mice had no obvious effects on the proportion and function of Treg cells, it affected the immune response and activation of CD4+ T cells. Moreover, the pathogenicity of CD4+ T cells was much increased, and this significantly accelerated the development of diabetes when these CD4+ T cells were transferred into immune-deficient NOD mice. Our study provides novel insights into the role of IL-10 in the modulation of neutrophils and CD4+ T cells in BDC2.5+ NOD mice, and suggests important crosstalk between gut microbiota and neutrophils in type 1 diabetes development.


2008 ◽  
Vol 82 (13) ◽  
pp. 6139-6149 ◽  
Author(s):  
Kate L. Graham ◽  
Natalie Sanders ◽  
Yan Tan ◽  
Janette Allison ◽  
Thomas W. H. Kay ◽  
...  

ABSTRACT Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet β cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged ≥12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8+ T-cell proportions in islets. Levels of β-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after β-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of β cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.


PLoS ONE ◽  
2010 ◽  
Vol 5 (7) ◽  
pp. e11789 ◽  
Author(s):  
Hongjie Wang ◽  
Yulan Jin ◽  
M. V. Prasad Linga Reddy ◽  
Robert Podolsky ◽  
Siyang Liu ◽  
...  

2010 ◽  
Vol 34 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Christian Pfleger ◽  
Guido Meierhoff ◽  
Hubert Kolb ◽  
Nanette C. Schloot

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 109-OR
Author(s):  
ANGELA M. MITCHELL ◽  
AIMON ALKANANI ◽  
KRISTEN MCDANIEL ◽  
LAURA PYLE ◽  
KATHLEEN WAUGH ◽  
...  

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 108-OR
Author(s):  
ERIN E. BASCHAL ◽  
ANGELA M. MITCHELL ◽  
KRISTEN MCDANIEL ◽  
AIMON ALKANANI ◽  
TAYLOR ARMSTRONG ◽  
...  

Diabetologia ◽  
2019 ◽  
Vol 62 (7) ◽  
pp. 1291-1296 ◽  
Author(s):  
Vit Neuman ◽  
Ondrej Cinek ◽  
David P. Funda ◽  
Tomas Hudcovic ◽  
Jaroslav Golias ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (6) ◽  
pp. 1251-1266 ◽  
Author(s):  
Florian Wiede ◽  
Thomas C. Brodnicki ◽  
Pei Kee Goh ◽  
Yew A. Leong ◽  
Gareth W. Jones ◽  
...  
Keyword(s):  
T Cell ◽  

10.1038/nm962 ◽  
2003 ◽  
Vol 9 (12) ◽  
pp. 1469-1476 ◽  
Author(s):  
Douglas G Millar ◽  
Kristine M Garza ◽  
Bernhard Odermatt ◽  
Alisha R Elford ◽  
Nobuyuki Ono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document