scholarly journals Effects of Treatment of Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes With Metformin Alone or in Combination With Insulin Glargine on β-Cell Function: Comparison of Responses In Youth And Adults

Diabetes ◽  
2019 ◽  
pp. db190299 ◽  
Author(s):  
Diabetes Care ◽  
2018 ◽  
Vol 41 (12) ◽  
pp. 2544-2551 ◽  
Author(s):  
Anny H. Xiang ◽  
Enrique Trigo ◽  
Mayra Martinez ◽  
Namir Katkhouda ◽  
Elizabeth Beale ◽  
...  

2010 ◽  
Vol 298 (1) ◽  
pp. E38-E48 ◽  
Author(s):  
Viorica Ionut ◽  
Huiwen Liu ◽  
Vahe Mooradian ◽  
Ana Valeria B. Castro ◽  
Morvarid Kabir ◽  
...  

Human type 2 diabetes mellitus (T2DM) is often characterized by obesity-associated insulin resistance (IR) and β-cell function deficiency. Development of relevant large animal models to study T2DM is important and timely, because most existing models have dramatic reductions in pancreatic function and no associated obesity and IR, features that resemble more T1DM than T2DM. Our goal was to create a canine model of T2DM in which obesity-associated IR occurs first, followed by moderate reduction in β-cell function, leading to mild diabetes or impaired glucose tolerance. Lean dogs ( n = 12) received a high-fat diet that increased visceral (52%, P < 0.001) and subcutaneous (130%, P < 0.001) fat and resulted in a 31% reduction in insulin sensitivity (SI) (5.8 ± 0.7 × 10−4 to 4.1 ± 0.5 × 10−4 μU·ml−1·min−1, P < 0.05). Animals then received a single low dose of streptozotocin (STZ; range 30–15 mg/kg). The decrease in β-cell function was dose dependent and resulted in three diabetes models: 1) frank hyperglycemia (high STZ dose); 2) mild T2DM with normal or impaired fasting glucose (FG), 2-h glucose >200 mg/dl during OGTT and 77–93% AIRg reduction (intermediate dose); and 3) prediabetes with normal FG, normal 2-h glucose during OGTT and 17–74% AIRg reduction (low dose). Twelve weeks after STZ, animals without frank diabetes had 58% more body fat, decreased β-cell function (17–93%), and 40% lower SI. We conclude that high-fat feeding and variable-dose STZ in dog result in stable models of obesity, insulin resistance, and 1) overt diabetes, 2) mild T2DM, or 3) impaired glucose tolerance. These models open new avenues for studying the mechanism of compensatory changes that occur in T2DM and for evaluating new therapeutic strategies to prevent progression or to treat overt diabetes.


2015 ◽  
Vol 308 (6) ◽  
pp. E535-E544 ◽  
Author(s):  
Christoffer Martinussen ◽  
Kirstine N. Bojsen-Møller ◽  
Carsten Dirksen ◽  
Siv H. Jacobsen ◽  
Nils B. Jørgensen ◽  
...  

Roux-en-Y gastric bypass surgery (RYGB) in patients with type 2 diabetes often leads to early disease remission, and it is unknown to what extent this involves improved pancreatic β-cell function per se and/or enhanced insulin- and non-insulin-mediated glucose disposal (glucose effectiveness). We studied 30 obese patients, including 10 with type 2 diabetes, 8 with impaired glucose tolerance, and 12 with normal glucose tolerance before, 1 wk, and 3 mo after RYGB, using an intravenous glucose tolerance test (IVGTT) to estimate first-phase insulin response, insulin sensitivity (Si), and glucose effectiveness with Bergman's minimal model. In the fasting state, insulin sensitivity was estimated by HOMA-S and β-cell function by HOMA-β. Moreover, mixed-meal tests and oral GTTs were performed. In patients with type 2 diabetes, glucose levels normalized after RYGB, first-phase insulin secretion in response to iv glucose increased twofold, and HOMA-β already improved 1 wk postoperatively, with further enhancements at 3 mo. Insulin sensitivity increased in the liver (HOMA-S) at 1 wk and at 3 mo in peripheral tissues (Si), whereas glucose effectiveness did not improve significantly. During oral testing, GLP-1 responses and insulin secretion increased regardless of glucose tolerance. Therefore, in addition to increased insulin sensitivity and exaggerated postprandial GLP-1 levels, diabetes remission after RYGB involves early improvement of pancreatic β-cell function per se, reflected in enhanced first-phase insulin secretion to iv glucose and increased HOMA-β. A major role for improved glucose effectiveness after RYGB was not supported by this study.


Author(s):  
Rong Huang ◽  
Songping Yin ◽  
Yongxin Ye ◽  
Nixuan Chen ◽  
Shiyun Luo ◽  
...  

<p>OBJECTIVE: The aim of this study was to examine the association of circulating retinol binding protein 4 (RBP4) levels with β cell function across the spectrum of glucose tolerance from normal to overt type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 291 subjects aged 35-60 with normal glucose tolerance (NGT), newly diagnosed impaired fasting glucose or glucose tolerance (IFG/IGT) and type 2 diabetes were screened by standard 2-h oral glucose tolerance test (2-h OGTT) with the use of traditional measures to evaluate β cell function. 74 subjects from these participants were recruited in oral minimal model test and assessed β cell function with model-derived indices. Circulating RBP4 levels were measured by a commercially available ELISA kit. RESULTS: Circulating RBP4 levels were significantly and inversely correlated with β cell function indicated by the Stumvoll first-phase and second-phase insulin secretion indexes, but not with HOMA-β, calculated from the 2-h OGTT in 291 subjects across the spectrum of glycemia. The inverse association was also observed in subjects involved in the oral minimal model test with β cell function assessed by both direct measures and model-derived measures, after adjustment for potential confounders. Moreover, RBP4 emerged as an independent factor of the disposition index-total insulin secretion (DI-PhiT). CONCLUSION: Circulating RBP4 levels are inversely and independently correlated with β cell function across the spectrum of glycemia, providing another possible explanation of the linkage between RBP4 and the pathogenesis of type 2 diabetes.</p>


Sign in / Sign up

Export Citation Format

Share Document