scholarly journals The Metabolic Significance of Intermuscular Adipose Tissue: Is IMAT a Friend or a Foe to Metabolic Health?

Diabetes ◽  
2021 ◽  
Vol 70 (11) ◽  
pp. 2457-2467
Author(s):  
Lauren Marie Sparks ◽  
Bret H. Goodpaster ◽  
Bryan C. Bergman
2021 ◽  
Author(s):  
Benjamin Thomas ◽  
Karla Suckacki ◽  
Claire Fyfe ◽  
Adriana Tavares ◽  
Richard Sulston ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lenore R Rengel ◽  
Brittaney Obi ◽  
Jon Gould ◽  
Matthew Goldblatt ◽  
Andrew Kastenmeier ◽  
...  

Introduction: Peripheral adiposity is associated with better metabolic health and higher plasma adiponectin (ADPN) levels. Since ADPN is secreted mainly by adipose tissue (AT), it is intriguing that higher visceral adipose tissue (VAT) is associated with lower ADPN levels and poor metabolic health. Hypothesis: We hypothesized that various AT depots differ in their ability to secrete ADPN. Methods: Paired AT samples (VAT and subcutaneous adipose tissue (SAT)) were collected from 19 subjects (10 women, 15 obese) undergoing elective abdominal surgery. The samples were cultured and the supernatant was collected after 24 hours. ADPN levels released into the supernatant from VAT and SAT were measured using multiplex methods. Subjects were defined as obese or non-obese (NO) based on BMI > or ≤ 30kg/m2 respectively. Obese subjects were further classified as metabolically unhealthy obese (MUO) or metabolically healthy obese (MHO) based on presence or absence of type 2 diabetes mellitus, hypertension, or cardiovascular disease at the time of surgery. Results: Mean ADPN secretion levels from SAT and VAT were similar in NO subjects (17.3 ± 3.4 vs. 9.8 ± 13.0 ng/mL/mg, p=0.5) whereas the mean ADPN secretion was lower from VAT among obese subjects (15.9 ± 0.8 vs. 4.5 ± 0.2 ng/mL/mg, p=0.0002). ADPN secretion decreased from VAT (r=-0.16) and increased from SAT (r=0.33) with increased BMI (Fig.1). When MHO and MUO were compared, ADPN secretion from VAT in MHO was reduced only slightly (16.1 ± 8.2 vs. 4.0 ± 2.0 ng/mL/mg, p=0.07) whereas ADPN secretion was significantly reduced in MUO (15.9 ± 5.3 vs. 4.7 ± 4.6 ng/mL/mg, p=0.003). Conclusions: Reduced ADPN secretion from VAT in subjects with increasing BMI may explain lower circulating ADPN levels in obese individuals. Higher ADPN production from SAT and the relatively preserved secretion of ADPN from VAT may explain metabolic health in some obese individuals. Futures studies will help identify factors that control ADPN secretion from AT.


2018 ◽  
Vol 504 (2) ◽  
pp. 427-433 ◽  
Author(s):  
Dhite Bayu Nugroho ◽  
Koji Ikeda ◽  
Kazuaki Kajimoto ◽  
Ken-ichi Hirata ◽  
Noriaki Emoto

2020 ◽  
Vol 2 (12) ◽  
pp. 1427-1442
Author(s):  
Julia S. Brunner ◽  
Andrea Vogel ◽  
Alexander Lercher ◽  
Michael Caldera ◽  
Ana Korosec ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. E987-E998 ◽  
Author(s):  
Roberto Vettor ◽  
Gabriella Milan ◽  
Chiara Franzin ◽  
Marta Sanna ◽  
Paolo De Coppi ◽  
...  

The intermuscular adipose tissue (IMAT) is a depot of adipocytes located between muscle bundles. Several investigations have recently been carried out to define the phenotype, the functional characteristics, and the origin of the adipocytes present in this depot. Among the different mechanisms that could be responsible for the accumulation of fat in this site, the dysdifferentiation of muscle-derived stem cells or other mesenchymal progenitors has been postulated, turning them into cells with an adipocyte phenotype. In particular, muscle satellite cells (SCs), a heterogeneous stem cell population characterized by plasticity and self-renewal that allow muscular growth and regeneration, can acquire features of adipocytes, including the abilities to express adipocyte-specific genes and accumulate lipids. Failure to express the transcription factors that direct mesenchymal precursors into fully differentiated functionally specialized cells may be responsible for their phenotypic switch into the adipogenic lineage. We proved that human SCs also possess a clear adipogenic potential that could explain the presence of mature adipocytes within skeletal muscle. This occurs under some pathological conditions (i.e., primary myodystrophies, obesity, hyperglycemia, high plasma free fatty acids, hypoxia, etc.) or as a consequence of thiazolidinedione treatment or simply because of a sedentary lifestyle or during aging. Several pathways and factors (PPARs, WNT growth factors, myokines, GEF-GAP-Rho, p66shc, mitochondrial ROS production, PKCβ) could be implicated in the adipogenic conversion of SCs. The understanding of the molecular pathways that regulate muscle-to-fat conversion and SC behavior could explain the increase in IMAT depots that characterize many metabolic diseases and age-related sarcopenia.


2016 ◽  
Vol 311 (1) ◽  
pp. R79-R88 ◽  
Author(s):  
Lorna M. Dickson ◽  
Shriya Gandhi ◽  
Brian T. Layden ◽  
Ronald N. Cohen ◽  
Barton Wicksteed

Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health.


2016 ◽  
Vol 93 ◽  
pp. 21-26 ◽  
Author(s):  
Paraskevi Sakellariou ◽  
Angelica Valente ◽  
Andres E. Carrillo ◽  
George S. Metsios ◽  
Liliya Nadolnik ◽  
...  

2013 ◽  
Vol 14 (4) ◽  
pp. 8611-8624 ◽  
Author(s):  
Jideng Ma ◽  
Shuzhen Yu ◽  
Fengjiao Wang ◽  
Lin Bai ◽  
Jian Xiao ◽  
...  

2020 ◽  
Vol 4 (s1) ◽  
pp. 9-9
Author(s):  
Darcy Kahn ◽  
Simona Zarini ◽  
Emily Macias ◽  
Amanda Garfield ◽  
Kathleen Harrison ◽  
...  

OBJECTIVES/GOALS: Intermuscular adipose tissue (IMAT) has been associated with insulin resistance and type 2 diabetes, yet mechanistic studies addressing the functional role of IMAT are lacking. The aim of this work was to identify novel mechanisms by which IMAT may directly impact skeletal muscle metabolism. METHODS/STUDY POPULATION: We quantified the secretome of IMAT, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) to determine if there are differences between depots in the secretion of cytokines, eicosanoids, FFAs and proteins that influence metabolic function. SAT and VAT biopsies from patients undergoing laparoscopic bariatric surgery and IMAT extracted from vastus lateralis biopsies of individuals with Obesity were cultured for 48 hours in DMEM, and the conditioned media was analyzed using nanoflow HPLC-MS, multiplex ELISAs and LC/MS/MS for proteins, cytokines and eicosanoids/FFA, respectively. RESULTS/ANTICIPATED RESULTS: IMAT secretion of various extracellular matrix proteins (fibrinogen-β, collagenV1a3, fibronectin) was significantly different than VAT and SAT. Pro-inflammatory cytokine secretion of IFNg, TNFa, IL-8 and IL-13 from IMAT was higher than VAT and significantly higher than SAT (p < 0.05). IMAT secretes significantly more pro-inflammatory eicosanoids TXB2 and PGE2 than VAT (p = 0.02, 0.05) and SAT (p = 0.01, 0.04). IMAT and VAT have significantly greater basal lipolysis assessed by FFA release rates compared to SAT (p = 0.01, 0.04). DISCUSSION/SIGNIFICANCE OF IMPACT: These data begin to characterize the disparate secretory properties of SAT, VAT and IMAT and suggest a metabolically adverse secretome of IMAT, that due to its proximity to skeletal muscle may play an important functional role in the pathogenesis of insulin resistance and type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document