Mutation P291fsinsC in the transcription factor hepatocyte nuclear factor-1alpha is dominant negative

Diabetes ◽  
1998 ◽  
Vol 47 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
K. Yamagata ◽  
Q. Yang ◽  
K. Yamamoto ◽  
H. Iwahashi ◽  
J. Miyagawa ◽  
...  
Diabetes ◽  
1998 ◽  
Vol 47 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
K. Yamagata ◽  
Q. Yang ◽  
K. Yamamoto ◽  
H. Iwahashi ◽  
J.-i. Miyagawa ◽  
...  

2013 ◽  
Vol 305 (1) ◽  
pp. F100-F110 ◽  
Author(s):  
Yun-Hee Choi ◽  
Brian T. McNally ◽  
Peter Igarashi

Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.


1992 ◽  
Vol 12 (2) ◽  
pp. 552-562
Author(s):  
L Pani ◽  
X B Quian ◽  
D Clevidence ◽  
R H Costa

The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.


1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


2007 ◽  
Vol 405 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Thirajit Boonsaen ◽  
Pinnara Rojvirat ◽  
Kathy H. Surinya ◽  
John C. Wallace ◽  
Sarawut Jitrapakdee

PC (pyruvate carboxylase) plays a crucial role in intermediary metabolism including glucose-induced insulin secretion in pancreatic islets. In the present study, we identified two regions of the 1.2 kb distal promoter, the −803/−795 site and the −408/−403 E-box upstream of the transcription start site, as the important cis-acting elements for transcriptional activation of the luciferase reporter gene. Site-directed mutagenesis of either one of these sites in the context of this 1.2 kb promoter fragment, followed by transient transfections in the insulinoma cell line, INS-1, abolished reporter activity by approx. 50%. However, disruption of either the −803/−795 or the −408/−403 site did not affect reporter gene activity in NIH 3T3 cells, suggesting that this promoter fragment is subjected to cell-specific regulation. The nuclear proteins that bound to these −803/−795 and −408/−403 sites were identified by gel retardation assays as HNF3β (hepatocyte nuclear factor 3β)/Foxa2 (forkhead/winged helix transcription factor box2) and USFs (upstream stimulatory factors), USF1 and USF2, respectively. Chromatin immunoprecipitation assays using antisera against HNF3β/Foxa2, USF1 and USF2 demonstrated that endogenous HNF3β/Foxa2 binds to the −803/−795 Foxa2 site, and USF1 and USF2 bind to the −408/−403 E-box respectively in vivo, consistent with the gel retardation assay results. Although there are weak binding sites located at regions −904 and −572 for PDX1 (pancreatic duodenal homeobox-1), a transcription factor that controls expression of β-cell-specific genes, it did not appear to regulate PC expression in INS-1 cells in the context of the 1.2 kb promoter fragment. The results presented here show that Foxa2 and USFs regulate the distal promoter of the rat PC gene in a cell-specific manner.


1996 ◽  
Vol 93 (18) ◽  
pp. 9460-9464 ◽  
Author(s):  
F. P. Lemaigre ◽  
S. M. Durviaux ◽  
O. Truong ◽  
V. J. Lannoy ◽  
J. J. Hsuan ◽  
...  

1999 ◽  
Vol 266 (1) ◽  
pp. 196-202 ◽  
Author(s):  
Qin Yang ◽  
Kazuya Yamagata ◽  
Koji Yamamoto ◽  
Jun-ichiro Miyagawa ◽  
Jun Takeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document