scholarly journals Abnormal regional benzodiazepine receptor uptake in the prefrontal cortex in patients with mild traumatic brain injury

2009 ◽  
Vol 41 (8) ◽  
pp. 661-665 ◽  
Author(s):  
K Hashimoto ◽  
M Abo
2018 ◽  
Vol 29 (5) ◽  
pp. 1953-1968 ◽  
Author(s):  
Ming-Xiong Huang ◽  
Sharon Nichols ◽  
Ashley Robb-Swan ◽  
Annemarie Angeles-Quinto ◽  
Deborah L Harrington ◽  
...  

Abstract Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source–magnitude images were obtained for alpha (8–12 Hz), beta (15–30 Hz), gamma (30–90 Hz), and low-frequency (1–7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Dhyey Bhatt ◽  
Ali Hazari ◽  
Glenn R Yamakawa ◽  
Sabrina Salberg ◽  
Marissa Sgro ◽  
...  

Abstract The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity. Also pervasive in adolescents is recreational cannabis use. Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity. Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries. Male and female Sprague-Dawley rats were randomly assigned to receive Δ9-tetrahydrocannabinol or vehicle either prior to or following the repeated injuries. Rats were then tested on a behavioural test battery designed to measure post-concussive symptomology. The hippocampus, nucleus accumbens and prefrontal cortex were extracted from all animals to examine mRNA expression changes (Bdnf, Cnr1, Comt, GR, Iba-1 and Vegf-2R). We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit. Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1, Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex. There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.


2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Author(s):  
Christine Parrish ◽  
Carole Roth ◽  
Brooke Roberts ◽  
Gail Davie

Abstract Background: Mild traumatic brain injury (mTBI) is recognized as the signature injury of the current conflicts in Iraq and Afghanistan, yet there remains limited understanding of the persisting cognitive deficits of mTBI sustained in combat. Speech-language pathologists (SLPs) have traditionally been responsible for evaluating and treating the cognitive-communication disorders following severe brain injuries. The evaluation instruments historically used are insensitive to the subtle deficits found in individuals with mTBI. Objectives: Based on the limited literature and clinical evidence describing traditional and current tests for measuring cognitive-communication deficits (CCD) of TBI, the strengths and weaknesses of the instruments are discussed relative to their use with mTBI. It is necessary to understand the nature and severity of CCD associated with mTBI for treatment planning and goal setting. Yet, the complexity of mTBI sustained in combat, which often co-occurs with PTSD and other psychological health and physiological issues, creates a clinical challenge for speech-language pathologists worldwide. The purpose of the paper is to explore methods for substantiating the nature and severity of CCD described by service members returning from combat. Methods: To better understand the nature of the functional cognitive-communication deficits described by service members returning from combat, a patient questionnaire and a test protocol were designed and administered to over 200 patients. Preliminary impressions are described addressing the nature of the deficits and the challenges faced in differentiating the etiologies of the CCD. Conclusions: Speech-language pathologists are challenged with evaluating, diagnosing, and treating the cognitive-communication deficits of mTBI resulting from combat-related injuries. Assessments that are sensitive to the functional deficits of mTBI are recommended. An interdisciplinary rehabilitation model is essential for differentially diagnosing the consequences of mTBI, PTSD, and other psychological and physical health concerns.


Sign in / Sign up

Export Citation Format

Share Document