contextual fear memory
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 71)

H-INDEX

35
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Miguel Antonio Xavier de Lima ◽  
Marcus Vinicius C Baldo ◽  
Fernando A Oliveira ◽  
Newton Sabino Canteras

Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.


Author(s):  
Lucas A. Marcondes ◽  
Jociane de C. Myskiw ◽  
Eduarda G. Nachtigall ◽  
Rodrigo F. Narvaes ◽  
Ivan Izquierdo ◽  
...  

2021 ◽  
pp. 174658
Author(s):  
Xinhao Wang ◽  
Yize Zhao ◽  
Xiaorui Shi ◽  
Miao Gong ◽  
Ying Hao ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nadine F. Joseph ◽  
Aya Zucca ◽  
Jenna L. Wingfield ◽  
Isabel Espadas ◽  
Damon Page ◽  
...  

AbstractMolecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.


2021 ◽  
Author(s):  
Wouter R Cox ◽  
Leonidas Faliagkas ◽  
Rolinka van der Loo ◽  
Sabine Spijker ◽  
Merel Kindt ◽  
...  

Post-reactivation amnesia of contextual fear memories by blockade of noradrenergic signaling has been shown to have limited replicability in rodents. This is usually attributed to several boundary conditions that gate the destabilization of memory during its retrieval. However, how these boundary conditions can be overcome, and what neural mechanisms underlie post-reactivation changes in contextual fear memory remain largely unknown. Here, we report a series of experiments in a contextual fear conditioning paradigm in mice, that were aimed at elucidating these matters. Towards this overarching goal, we first attempted to obtain a training paradigm that would consistently result in a contextual fear memory that could be destabilized upon reactivation, enabling robust amnesia by administration of propranolol. Unexpectedly, our attempts were unsuccessful to this end. Specifically, over a series of 11 experiments (including replicates) in which we varied different parameters of the fear acquisition procedure and administered propranolol or anisomycin, at best small and inconsistent effects were observed. These null findings are surprising, given that the training paradigms we implemented were previously shown to be vulnerable to post-reactivation amnestic agents. Additionally, we found that propranolol did not alter memory retrieval-induced neural activity, as measured by the number of c-Fos+ cells in the hippocampal dentate gyrus. Together, our findings illustrate the elusive nature of reactivation-dependent changes of non-human fear memory and underscore the need for better control over genetic and environmental factors that may influence behavioral outcomes of commonly used mouse strains.


2021 ◽  
Vol 28 (11) ◽  
pp. 414-421
Author(s):  
Rojina Samifanni ◽  
Mudi Zhao ◽  
Arely Cruz-Sanchez ◽  
Agarsh Satheesh ◽  
Unza Mumtaz ◽  
...  

The ability to generate memories that persist throughout a lifetime (that is, memory persistence) emerges in early development across species. Although it has been shown that persistent fear memories emerge between late infancy and adolescence in mice, it is unclear exactly when this transition takes place, and whether two major fear conditioning tasks, contextual and auditory fear, share the same time line of developmental onset. Here, we compared the ontogeny of remote contextual and auditory fear in C57BL/6J mice across early life. Mice at postnatal day (P)15, 21, 25, 28, and 30 underwent either contextual or auditory fear training and were tested for fear retrieval 1 or 30 d later. We found that mice displayed 30-d memory for context– and tone–fear starting at P25. We did not find sex differences in the ontogeny of either type of fear memory. Furthermore, 30-d contextual fear retrieval led to an increase in the number of c-Fos positive cells in the prelimbic region of the prefrontal cortex only at an age in which the contextual fear memory was successfully retrieved. These data delineate a precise time line for the emergence of persistent contextual and auditory fear memories in mice and suggest that the prelimbic cortex is only recruited for remote memory recall upon the onset of memory persistence.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jaedong Lee ◽  
Jeehyun Kwag

Abstract Background Accumulation of amyloid beta oligomers (AβO) in Alzheimer’s disease (AD) impairs hippocampal long-term potentiation (LTP), leading to memory deficits. Thus, identifying the molecular targets of AβO involved in LTP inhibition is critical for developing therapeutics for AD. Endocannabinoid (eCB) synthesis and release, a process collectively called eCB mobilization by hippocampal CA1 pyramidal cells, is known to facilitate LTP induction. eCB can be mobilized either by postsynaptic depolarization in an intracellular Ca2+ concentration ([Ca2+]i)-dependent pathway or by group 1 metabotropic glutamate receptor (mGluR) activation in a phospholipase Cβ (PLCβ)-dependent pathway. Moreover, group 1 mGluR activation during postsynaptic depolarization, which is likely to occur in vivo during memory processing, can cause synergistic enhancement of eCB (S-eCB) mobilization in a PLCβ-dependent pathway. Although AβO has been shown to disrupt [Ca2+]i-dependent eCB mobilization, the effect of AβO on PLCβ-dependent S-eCB mobilization and its association with LTP and hippocampus-dependent memory impairments in AD is unknown. Methods We used in vitro whole-cell patch-clamp recordings and western blot analyses to investigate the effect of AβO on PLCβ protein levels, PLCβ-dependent S-eCB mobilization, and spike-timing-dependent potentiation (tLTP) in AβO-treated rat hippocampal slices in vitro. In addition, we assessed the relationship between PLCβ protein levels and hippocampus-dependent memory impairment by performing a contextual fear memory task in vivo in the 5XFAD mouse model of AD. Results We found that AβO treatment in rat hippocampal slices in vitro decreased hippocampal PLCβ1 protein levels and disrupted S-eCB mobilization, as measured by western blot analysis and in vitro whole-cell patch-clamp recordings. This consequently led to the impairment of NMDA receptor (NMDAR)-mediated tLTP at CA3-CA1 excitatory synapses in AβO-treated rat hippocampal slices in vitro. Application of the PLCβ activator, m-3M3FBS, in rat hippocampal slices reinstated PLCβ1 protein levels to fully restore S-eCB mobilization and NMDAR-mediated tLTP. In addition, direct hippocampal injection of m-3M3FBS in 5XFAD mice reinstated PLCβ1 protein levels to those observed in wild type control mice and fully restored hippocampus-dependent contextual fear memory in vivo in 5XFAD mice. Conclusion We suggest that these results might be the consequence of memory impairment in AD by disrupting S-eCB mobilization. Therefore, we propose that PLCβ-dependent S-eCB mobilization could provide a new therapeutic strategy for treating memory deficits in AD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Eunkyung Lie ◽  
Yeji Yeo ◽  
Eun-Jae Lee ◽  
Wangyong Shin ◽  
Kyungdeok Kim ◽  
...  

AbstractMany synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3−/−) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3−/− hippocampus show increased currents of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3−/− mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3−/− mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).


Sign in / Sign up

Export Citation Format

Share Document