scholarly journals Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke

2015 ◽  
Vol 47 (8) ◽  
pp. 706-713 ◽  
Author(s):  
E Ekstrand ◽  
J Lexell ◽  
C Brogårdh
Author(s):  
Joo Yeol Jung ◽  
Pong Sub Youn ◽  
Dong Hoon Kim

AbstractThis study was performed to evaluate the effects of Mirror therapy combined with EMG-triggered Functional Electrical Stimulation on upper extremity function in patient with Chronic Stroke. A total of 24 chronic stroke patients were divided into 3 groups. Group I (n=8) was given with traditional physical therapy (TPT), group II (n=7) was given with traditional physical therapy and mirror therapy (MT), and group III (n=9) was given with traditional physical therapy and mirror therapy in conjunction with EMG-triggered Functional Electrical Stimulation (EMGFES-MT). Each group performed one hour a day 5 times a week for 6 weeks.We obtained the following result between before and after treatments about changes of elbow flexion muscle strength (EFMS), elbow extension muscle strength (EEMS), wrist flexion muscle strength (WFMS), wrist extension muscle strength (WEMS), elbow flexion range of motion (EFROM), elbow extension range of motion (EEROM), wrist flexion range of motion (WFROM), wrist extension range of motion (WEROM), grip strength (GS) and upper extremity function.Each group showed a significant difference in EFMS, EEMS, WFMS, WEMS, EFROM, EEROM, WFROM, WEROM, GS and upper extremity function (p<0.05) EMFES-MT group revealed significant differences in EEMS, WEROM, grip strength and upper extremity function as compared to the other groups (p<0.05). No difference was found in the change of spasticity among the 3 groups.Our results showed that EMFES-MT was more effective on elbow, WFMS, WEMS, AROM, grip strength and upper extremity function in patients with chronic stroke. We suggest that this study will be able to be used as an intervention data for recovering upper extremity function in chronic stroke patients


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenhui Yang ◽  
Tiev Miller ◽  
Zou Xiang ◽  
Marco Y. C. Pang

AbstractThis randomized controlled trial aimed to evaluate the effects of different whole body vibration (WBV) frequencies on concentric and eccentric leg muscle strength, bone turnover and walking endurance after stroke. The study involved eighty-four individuals with chronic stroke (mean age = 59.7 years, SD = 6.5) with mild to moderate motor impairment (Fugl-Meyer Assessment lower limb motor score: mean = 24.0, SD = 3.5) randomly assigned to either a 20 Hz or 30 Hz WBV intervention program. Both programs involved 3 training sessions per week for 8 weeks. Isokinetic knee concentric and eccentric extension strength, serum level of cross-linked N-telopeptides of type I collagen (NTx), and walking endurance (6-min walk test; 6MWT) were assessed at baseline and post-intervention. An intention-to-treat analysis revealed a significant time effect for all muscle strength outcomes and NTx, but not for 6MWT. The time-by-group interaction was only significant for the paretic eccentric knee extensor work, with a medium effect size (0.44; 95% CI: 0.01, 0.87). Both WBV protocols were effective in improving leg muscle strength and reducing bone resorption. Comparatively greater improvement in paretic eccentric leg strength was observed for the 30 Hz protocol.


Sign in / Sign up

Export Citation Format

Share Document