Heavy Truck Handling Performance Analysis in Vehicle Test and Computer Simulation

1997 ◽  
Vol 25 (2) ◽  
pp. 119-136 ◽  
Author(s):  
C. Schröder ◽  
A. Duchow

Abstract The dynamic stability of heavy trucks, as spinout, jackknifing, and rollover, is highly dependent on vehicle configuration, driving maneuver, and the force and moment characteristics of tires. Increasing safety requirements on the handling performance of heavy trucks demand tools that allow a tire design engineer to predict tire influences on the tire/vehicle system dynamic behavior. The computer simulation of handling performance of vehicles offers possibilities of evaluating influences of tire design changes on handling properties in any developing stage of new tire lines. Thus, modern simulation techniques may contribute to the building and testing of tires in an early design stage. This paper presents results from a recent program of tire/vehicle system research, applying tire/vehicle testing and simulation techniques to a 40 ton truck-semitrailer combination. The goal of this work is to visualize the possibilities of state-of-the-art simulation technologies on the tire design process. Tire force and moment characteristics can be calculated from the tire layout by an advanced tire model. The tire model for this type of calculation is a multibody system. Calculated and measured dynamic tire characteristics are used for the full vehicle handling simulation in ADAMS. Extensive tire characteristic testing on the road and test stand was done to improve and validate the tire model. Vehicle handling tests as steady state circular and lateral transient response tests were done for the empty and laden vehicle with different tires to prove the vehicle model. With the use of the simulation of the tire and vehicle behavior, the tire design engineer will be able to judge tire characteristics of different variants in an early design stage. Vehicle dynamic simulation studies up to instability as spinout, jackknifing, and rollover can be performed using modern CAE methods without harming man and environment, but subjective and objective tire evaluation still remains necessary for approving and validating the predicted results.

Author(s):  
Lukman Irshad ◽  
Salman Ahmed ◽  
Onan Demirel ◽  
Irem Y. Tumer

Detection of potential failures and human error and their propagation over time at an early design stage will help prevent system failures and adverse accidents. Hence, there is a need for a failure analysis technique that will assess potential functional/component failures, human errors, and how they propagate to affect the system overall. Prior work has introduced FFIP (Functional Failure Identification and Propagation), which considers both human error and mechanical failures and their propagation at a system level at early design stages. However, it fails to consider the specific human actions (expected or unexpected) that contributed towards the human error. In this paper, we propose a method to expand FFIP to include human action/error propagation during failure analysis so a designer can address the human errors using human factors engineering principals at early design stages. To explore the capabilities of the proposed method, it is applied to a hold-up tank example and the results are coupled with Digital Human Modeling to demonstrate how designers can use these tools to make better design decisions before any design commitments are made.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Chenglong Wang

It is important to allocate a reliability goal for the hydraulic excavator in the early design stage of the new system. There are some effective methods for setting reliability target and allocating its constituent subsystems in the field of aerospace, electric, vehicles, railways, or chemical system, but until now there is no effective method for the hydraulic excavator or engineering machinery. In this paper, an approach is proposed which combines with the conventional reliability allocation methods for setting reliability goals and allocating the subsystem and parts useful in the early design stage of the hydraulic excavator newly developed. It includes Weibull analysis method, modified Aeronautical Radio Inc. (ARINC) method, and modified systematic failure mode and effect analysis (FMEA) method. After completing reliability allocation, it is necessary to organize the designers and experts to evaluate the rationality of the reliability target through FEMA analysis considering feasibility of the improvement technically for the part which was new developed or had fault in its predecessor. The proposed approach provides an easy methodology for allocate a practical reliability goal for the hydraulic excavator capturing the real life behavior of the product. It proposes a simple and unique way to capture the improvement of the subsystems or components of the hydraulic excavator. The proposed approach could be extended to consider other construction machinery equipment and have practicality value to research excellent mechanical product.


Sign in / Sign up

Export Citation Format

Share Document