Finite element simulation for temperature field in Nd:YAG laser-TIG hybrid welding of 5A06 aluminium alloy

Author(s):  
Shen Xianfeng ◽  
Teng Wenhua ◽  
Huang Wenrong
Applied laser ◽  
2010 ◽  
Vol 30 (4) ◽  
pp. 284-290
Author(s):  
凡进军 Fan Jinjun ◽  
赵剑峰 Zhao Jianfeng

2018 ◽  
Vol 242 ◽  
pp. 01022
Author(s):  
Liu Heping ◽  
Sun Fenger ◽  
Yibo Fenger ◽  
Cheng Shaolei ◽  
Liu Bin

In this paper, the finite element simulation of GH4169 high temperature alloy by selective laser melting was carried out, and the microstructure was analyzed by experiments. The results show that the shape of the temperature field cloud formed by the laser heat source is different from the shape of the theoretical model, but is in the shape of the ellipse. The temperature gradient at the front end of the molten pool is larger than that of the back end of the molten pool, and the isotherm of the front end of the molten pool is more intensive. The temperature of the substrate is less affected by the temperature gradient. The temperature gradient of the front end of the melting pool is larger than the back end of the molten pool, and the temperature field of selective laser melting is like a meteor with trailing tail. In the laser heat source, the temperature isotherm is the most dense and the temperature gradient is maximum. The relative effect of mechanical properties of δ phase is very complex. When the phase is precipitated by widmanstatten structure, it is easy to produce stress concentration as a source of cracks


2011 ◽  
Vol 4 (3) ◽  
pp. 824-829
Author(s):  
Xuda Qin ◽  
Hao Jia ◽  
Xiaolai Ji ◽  
Xiaotai Sun ◽  
Qi Wang

Sign in / Sign up

Export Citation Format

Share Document