From ps to fs: Dependence of the material removal rate and the surface quality on the pulse duration for metals, semiconductors and oxides

Author(s):  
Beat Neuenschwander ◽  
Beat Jaeggi ◽  
Marc Schmid
Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5231
Author(s):  
Evandro Paese ◽  
Martin Geier ◽  
Fabiano R. Rodrigues ◽  
Tadeusz Mikolajczyk ◽  
Mozammel Mia

In this study, an experimental and statistic investigation approach based on analysis of variance (ANOVA) and response surface methodology (RSM) techniques was performed to find the significant main effects and two-factor interaction effects and to determine how the controllable factors such as cutting speed, feed rate, depth of cut (DOC), tool nose radius, substrate and coating method of cutting tools influence surface quality in turning of AISI 1045 steel. The first optimal or near-optimal conditions for the quality of the generated surface and the second ones, including maximum material removal rate, were established using the proposed regression equations. The group mean roughness of the turned workpieces was lower from using chemical vapor deposition (CVD)-coated carbide inserts than the group means of other types of inserts; however they could not achieve the specific lowest roughness. The physical vapor deposition (PVD)-coated carbide and cermet inserts achieved the best surface quality when the specific combinations within the range interval of controllable factors were used in the experiment, showing that they may be applied to finish turning processes or even to particular high material removal rate conditions associated with the lowest roughness.


2010 ◽  
Vol 42 ◽  
pp. 170-174
Author(s):  
Cheng Guang Zhang ◽  
Xue Ling Yang ◽  
Bo Zhao

The experiment of ultrasonic assisted pulse electrochemical compound finishing is carried in this paper. The machining principle of the compound finishing is discussed in this paper. Processing experiments of compound finishing are carried out to study the effects of the main processing para- meters, including the particle size, the ultrasonic vibration amplitude, the minimum gap between the tool head and workpiece and the pulse voltage, on the material removal rate and the surface quality for hard and brittle metal materials. The curves of the corresponding relationships are also obtained. The study indicates that the processing velocity, machining accuracy and surface quality can be improved under the compound finishing, obtaining the processing technology conductions of the compound finishing. Introductions


Author(s):  
Chunhui Chung ◽  
Glenn Melendez ◽  
Imin Kao

Wafers made of materials such as silicon, III-V and II-VI compounds, and optoelectronic materials, require high-degree of surface quality in order to increase the yield in micro-electronics fabrication to produce IC chips and devices. Measures of properties of surface quality of wafers include: nanotopography, surface morphology, global planarization, total thickness variation (TTV) and warp. Due to the reduction of feature size in micro-electronics fabrication, the requirements of such properties become more and more stringent. To meet such requirements, the wafer manufacturing processes of brittle semiconductor materials, such as slicing, lapping, grinding, and polishing have been continually improved. In this paper, the lapping process of wafer surface treatment is studied with experimental results of surface roughness and material removal rate. In order to improve the performance of lapping process, effects of mixed abrasive grits in the slurry of the free abrasive machining (FAM) processes are studied using a single-sided wafer-lapping machine. Under the same slurry density, experiments employing different mixing ratios of large and small abrasive grits, and various normal loadings on the wafer surface applied through a jig are conducted for parameter study. With various mixing ratios and loadings, observations and measurements such as the total amount of material removed, material removal rate, surface roughness, and relative angular velocity are presented and discussed in this paper. The experiments show that the half-half mixing ratio of abrasives removes more material than other mixing ratios under the same conditions, but with a higher surface roughness. The results of this study can provide a good reference to the FAM processes that practitioners use today by exploiting different mixing ratios and loadings of abrasive slurry in the manufacturing processes.


2011 ◽  
Vol 317-319 ◽  
pp. 29-33 ◽  
Author(s):  
Xiang Dong Yang ◽  
Xin Wei ◽  
Xiao Zhu Xie ◽  
Zhuo Chen ◽  
Wei Bo Zou

This paper studies the chemical mechanical polishing (CMP) of the wafer's material such as stainless steel, monocrystalline silicon etc, and analyzes how the technological parameters’ impact on the final wafer’s surface material removal rate, surface quality and surface damage like the polishing pad’s speed and the wafer speed, polishing pressure and polishing time.The results show that: when the difference between the polishing pad's rotation speed and the wafer's rotation speed is small and their directions are the same , then the material removal rate of the wafer is larger.when the polishing pressure is selected between 5 to 6.5 kPa, the wafer surface's damage is smaller.The polishing time also play a very important role and affect the surface quality and surface damage of the wafer after polishing.


2011 ◽  
Vol 264-265 ◽  
pp. 1450-1455 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Tutik Sriani ◽  
Kei Prihandana ◽  
Yuta Prihandana ◽  
Muslim Mahardika ◽  
...  

The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been acknowledged extensively. However, the study of micro-size powder suspension in micro-EDM field is still limited. In this research, nano and micro size powder of MoS2 were used as catalyst agent. Powder suspension in different size was able to provide significant improvement in material removal rate and surface quality to increase the efficiency in μ- EDM processes.


Sign in / Sign up

Export Citation Format

Share Document