scholarly journals Change Detection in Cadastral 3D Models and Point Clouds and Its Use for Improved Texturing

2019 ◽  
Vol 2019 (7) ◽  
pp. 455-1-455-7
Author(s):  
Sander Klomp ◽  
Bas Boom ◽  
Thijs van Lankveld ◽  
Peter H.N. de With
2020 ◽  
Author(s):  
Christian Demmler ◽  
Marc Adams ◽  
Anne Hormes

<p>Mountainous areas bring unique challenges for surveying and natural hazard monitoring – inaccessibility, dangerous terrain, snow coverage and line-of-sight problems often make it next to impossible to perform ground-based monitoring or even to provide a good vantage point for close-range sensing (e.g. terrestrial laser scanning (TLS) or terrestrial photogrammetry). Airborne or satellite-based methods are often the only way to gain information about geodynamically active sites. Here, structure-from-motion (SfM) photogrammetry from unmanned aerial vehicle (UAV) imagery in particular can provide an inexpensive and easily implemented monitoring option. The Vigilans research project attempts to evaluate the feasibility of UAV-photogrammetry against more established surveying methods (e.g. in situ data from extensometers or total stations).</p><p>Our study site Marzellkamm is located in the Central Ötztal Alps of Western Austria. The active rock slope deformation we are monitoring in Vigilans lies at 2450-2850 m asl. on a SE-facing slope. Annual displacement rates of up to 1.5 m/year in the early 2010’s triggered monitoring and research interest. Due to the remote location, mitigation methods were not implemented, but a hiking trails was relocated. Orthoimage photogrammetry and ground-based monitoring instrumentation (extensometers, terrestrial laser scanning, total station measurements combined with GNSS and geodetic surveys) collected data 1971-2019.</p><p>In the last years, movement along the slope has slowed down considerably. The rather slow current movements provide a valuable challenge for detection, with rates of <0.05 m/year occurring in the more stable upper sections, while the NW section in particular still shows pronounced movement of up to 0.3 m/year. For this reason, Marzellkamm provides excellent evaluation for new methods such as UAV-SfM.</p><p>In three separate missions between summer 2018 to fall of 2019, UAV-SfM 3D-models of the site were created for displacement rate evaluations; it is planned to continue this monitoring for a total of three years as part of the Vigilans project. Photogrammetric missions were performed in conjunction with total station measurements of more than 30 ground control points.</p><p>The required level of precision is becoming achievable and affordable with new RTK/PPK-equipped (Real-Time-Kinematics/Post-Processed Kinematics) UAVs. However, evaluating the resulting 3D-- model in terms of movement rates remains non-trivial. The most common algorithm for change detection in point clouds, M3C2, is not well-suited to detect a laterally moving surface as a whole, as it detects changes along the normal orientation of a surface (such as subsidence). Therefore, the point cloud needs to be very selectively reduced, requiring complex filtering operations and expert input as well as expensive software packages.</p><p>This contribution will present a workflow to simplify such evaluation, based on 2.5D (DEM-based) algorithms such as IMCORR and DoD (Difference-of-DEMs), in comparison with the more complex 3D-pointcloud based processing. The presented workflow is based on Agisoft Metashape and Open-Source software tools QGIS and Saga GIS. It aims to streamline UAV-based surveying work, 3D-model generation and simplified change detection into a repeatable and easily automatable framework. Special emphasis will be put on estimating the quality of the recorded data.</p>


2021 ◽  
Vol 6 (4) ◽  
pp. 8277-8284
Author(s):  
Balazs Nagy ◽  
Lorant Kovacs ◽  
Csaba Benedek

2021 ◽  
Vol 10 (6) ◽  
pp. 367
Author(s):  
Simoni Alexiou ◽  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Emmanouil Psomiadis ◽  
...  

Analysis of two small semi-mountainous catchments in central Evia island, Greece, highlights the advantages of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) based change detection methods. We use point clouds derived by both methods in two sites (S1 & S2), to analyse the effects of a recent wildfire on soil erosion. Results indicate that topsoil’s movements in the order of a few centimetres, occurring within a few months, can be estimated. Erosion at S2 is precisely delineated by both methods, yielding a mean value of 1.5 cm within four months. At S1, UAV-derived point clouds’ comparison quantifies annual soil erosion more accurately, showing a maximum annual erosion rate of 48 cm. UAV-derived point clouds appear to be more accurate for channel erosion display and measurement, while the slope wash is more precisely estimated using TLS. Analysis of Point Cloud time series is a reliable and fast process for soil erosion assessment, especially in rapidly changing environments with difficult access for direct measurement methods. This study will contribute to proper georesource management by defining the best-suited methodology for soil erosion assessment after a wildfire in Mediterranean environments.


2013 ◽  
Vol 79 (5) ◽  
pp. 441-455 ◽  
Author(s):  
Marco Scaioni ◽  
Riccardo Roncella ◽  
Mario Ivan Alba

Author(s):  
Iris De Gelis ◽  
Sebastien Lefevre ◽  
Thomas Corpetti ◽  
Thomas Ristorcelli ◽  
Chloe Thenoz ◽  
...  

Author(s):  
Leena Matikainen ◽  
Juha Hyyppä ◽  
Paula Litkey

During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.


Author(s):  
J. Zhu ◽  
Y. Xu ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> In this work, we discussed how to directly combine thermal infrared image (TIR) and the point cloud without additional assistance from GCPs or 3D models. Specifically, we propose a point-based co-registration process for combining the TIR image and the point cloud for the buildings. The keypoints are extracted from images and point clouds via primitive segmentation and corner detection, then pairs of corresponding points are identified manually. After that, the estimated camera pose can be computed with EPnP algorithm. Finally, the point cloud with thermal information provided by IR images can be generated as a result, which is helpful in the tasks such as energy inspection, leakage detection, and abnormal condition monitoring. This paper provides us more insight about the probability and ideas about the combining TIR image and point cloud.</p>


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


Sign in / Sign up

Export Citation Format

Share Document