scholarly journals Optimization of Thermal Soft Reduction on Continuous-Casting Billet

2020 ◽  
Vol 60 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Yanshen Han ◽  
Wei Yan ◽  
Jiangshan Zhang ◽  
Weiqing Chen ◽  
Jun Chen ◽  
...  
2015 ◽  
Vol 1088 ◽  
pp. 153-158 ◽  
Author(s):  
An Gui Hou ◽  
Yi Min ◽  
Cheng Jun Liu ◽  
Mao Fa Jiang

A heat transfer and solidification model of slab continuous casting process was developed, and the nail-shooting experiments were carried out to verify and improve the prediction accuracy. The comparison between the simulation and the measurements results showed that, there exists difference between the model predicted liquid core length and the calculated liquid core length according to the measurement results of the solidification shell thickness. In the present study, the value of constant a in the heat transfer coefficient calculation formula was corrected through back-calculation, results showed that, the suitable value of a is 31.650, 33.468 and 35.126 when the casting speed is 0.8m·min-1, 0.9m·min-1 and 1.0m·min-1 respectively, which can meet the liquid core length of the measurement results. The developed model built a foundation for the application of dynamic secondary cooling, and dynamic soft reduction.


2014 ◽  
Vol 941-944 ◽  
pp. 1890-1894
Author(s):  
Guang Zheng Luo ◽  
Xin Liu ◽  
Ying Zhi ◽  
Xiang Hua Liu

The temperature field of continuous casting billet (CC-billet) is important to carry out the research on direct rolling of free-heating (DROF). The solidification and the heat transfer process of CC-billet from crystallizer to cutting point were studied by finite element method (FEM).The casting speed was improved in order to get reasonable temperature field during DROF.


2008 ◽  
Vol 575-578 ◽  
pp. 80-86 ◽  
Author(s):  
J. Luo ◽  
Xin Lin ◽  
Yan Hong Ye ◽  
K.W. Liu

A two dimensions (2D) multiphase solidification model is used to study the liquid core solidification in the influence of deformation during soft reduction of continuous casting (CC). The transient transport equations (mass, momentum and enthalpy) for each phase of a thin steel slab CC are solved. Four different cases including of density-temperature function and deformation reduction factor on this CC are simulated. The solidification ending point position of liquid core, temperature, velocity and fracture of liquid and solid phases are compared. Understandings to the deformation and liquid core formation mechanism on soft reduction solidification process of CC are improved.


1982 ◽  
Vol 13 (1) ◽  
pp. 91-104 ◽  
Author(s):  
I. V. Samarasekera ◽  
D. L. Anderson ◽  
J. K. Brimacombe

2016 ◽  
Vol 35 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Bo Wang ◽  
Jiongming Zhang ◽  
Chao Xiao ◽  
Shunxi Wang ◽  
Wei Song

AbstractThe formation of internal cracks in continuous casting slabs is mainly attributed to the strain status and microsegregation near the solidifying front of the slabs. By analyzing the internal cracks of medium carbon microalloy steel, the obtained conclusions are that C, P, S, etc. enrich in dendrites and exist in grain boundaries, but these are just the internal causes, and the root cracking causes the tensile stress of solidification front. When the slab passes through the straightening segments, the liquid core thickness is large, and the liquid steel in the space of columnar crystals is not completely frozen. Therefore, the reduction effect of rollers results in the strain of solidification front exceeding the critical value. However, the corresponding strain in the arc and horizontal segments does not exceed this critical value, so the solidification front in the straightening segments would be much easy to crack. The statistics analysis shows that after soft reduction and straightening process are separately carried out, the occurrence rate of intermediate cracks is reduced by 41.3%.


Sign in / Sign up

Export Citation Format

Share Document