continuous casting billet
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2020 ◽  
Vol 60 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Yanshen Han ◽  
Wei Yan ◽  
Jiangshan Zhang ◽  
Weiqing Chen ◽  
Jun Chen ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 560
Author(s):  
Jinwen Zhang ◽  
Zhigang Zhao ◽  
Wenxian Wang ◽  
Yutian Wang

AISI M2 steel was smelted in a 150 kg medium-frequency induction furnace and cast to form round billets with a cross-section diameter of 100 mm via a vertical continuous caster and sand mold. The secondary dendrite arm spacing (λ2), cooling rates, permeability and size and distribution of grains and network carbides of the two billets were studied. The results show that the continuous casting process can effectively decrease the λ2 value, permeability and size of the grains and carbides and improve the distribution of the grains and carbides during solidification. The λ2 values of the billets cast with a sand mold and continuous caster are 37.34 μm and 21.14 μm, respectively, and the cooling rate is 3.6 K·s−1 and 12.0 K·s−1, respectively. The area fractions of carbides at the center of the billets cast with the sand mold and continuous caster are 0.24 and 0.16, respectively, and increase by 27.7% and 25.4%, respectively, compared with their average values. The average grain size of billets cast with the sand mold and continuous caster is 69.4 μm and 50.5 μm, respectively. Compared with the sand mold billet, the grain size at the center of the continuous casting billet is reduced by 25.5%. The relationship between the grain size and cooling rate is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document