Evaluation of raw materials by simulation of direct reduction in the shaft furnace.

1986 ◽  
Vol 26 (10) ◽  
pp. 858-864
Author(s):  
A. L. MORRISON ◽  
J. K. WRIGHT
1977 ◽  
Vol 63 (14) ◽  
pp. 2269-2277
Author(s):  
Dentaro KANEKO ◽  
Yoshio KIMURA ◽  
Mamoru ONODA ◽  
Isao FUJITA

Author(s):  
A. N. Dmitriev ◽  
M. O. Zolotykh ◽  
G. Yu. Vit’kina ◽  
L. A. Marshuk ◽  
M. S. Yalunin

Development of a technology for obtaining direct reduction iron from titanium-magnetite ores, which will be the main ore base of the Ural ferrous metallurgy in the future, is one of the urgent tasks of metallurgical science. The world and domestic experience of the development of direct iron reduction processes, which are the most environmentally friendly of all existing methods of obtaining iron from ore considered. It was shown that the technology of metallization of iron ore materials in the Midrex shaft furnace has received the most widespread application. It is noted that the accumulated experience of using Midrex technology in Russian Federation will allow increasing the production of metallurgical raw materials with a reduced carbon footprint. An algorithm and a block diagram for calculating technical and economic indicators of the metallization process for the Midrex process shaft furnace are described. A methodology for calculating material and thermal balance of the Midrex process has been developed, taking into account the use of iron ore raw materials containing vanadium and titanium in the charge. On its basis, an algorithm was developed and a mathematical model of the metallization process was implemented, calculations of the metallization process of titanium-magnetite pellets obtained from the ores of the Kachkanar deposit in the Midrex mine furnace were performed. A comparison of the indicators of the metallization process of titanomagnetite pellets carried out in the shaft furnace of JSC “OEMK named after A.A. Ugarov” and obtained using the created software product showed satisfactory convergence of the results.


Author(s):  
Dentaro KANEKO ◽  
Yoshio KIMURA ◽  
Mamoru ONODA ◽  
Isao FUJITA

Author(s):  
P.I. Loboda ◽  
Younes Razaz ◽  
S. Grishchenko

Purpose. To substantiate the efficiency of processing hematite raw materials at the Krivoy Rog Mining and Processing Plant of Oxidized Ores using the direct reduction technology itmk3®. Metodology. Analysis of the results of the itmk3® direct restoration technology developed by Kobe Steel Ltd., Japan and Hares Engineering GmbX, Austria, with a view to using it to process Krivbass hematite ores into granulated iron (so-called “nuggets”). Findings. The involvement in the production of hematite ores (oxidized quartzite) of Krivbass with high iron content, but with low magnetic properties for their processing into granular cast iron is grounded. Originality. The use of itmk3® direct reduction technology from Kobe Steel Ltd., Japan and Hares Engineering GmbH, Austria for the processing of Krivbass hematite ores into granular cast iron is justified for the first time. Practical value. The efficiency of the use of hematite ores (oxidized quartzite) has been substantiated, which can significantly reduce the costs in the mining cycle for the economical production of metallurgical products.


Author(s):  
Reijiro TAKAHASHI ◽  
Yoshikazu TAKAHASHI ◽  
Jun-ichiro YAGI ◽  
Yasuo OMORI

2019 ◽  
pp. 23-29
Author(s):  
M. Semerak ◽  
S. Lys ◽  
T. Kovalenko

The possibility of the plasma processing of low-level or intermediatelevel radioactive wastes in the reactor equipped with arc plasmatrons is shown. The reactor design for the plasma processing of the radioactive wastes that allows promoting the efficiency of the plasma processing of the radioactive wastes (RAW) by the increasing of the speed and the intensity of the plasma pyrolysis is proposed. The various methods for RAW preparation, dosage and supply into the plasmochemical reactor have been investigated. The waste which is supplied to the reactor can be in various aggregate states (solid, liquid or gaseous) depending on which different kinds of preparation, dosage, and supply of RAW materials to the plasmochemical reactor are used. The solid waste must be ground for increasing of the phase separation surface. The degree of grinding of the wastes depends on their further reprocessing. The reactor allows processing of the mixed-type radioactive waste, which includes both combustible and non-combustible components. The wastes can be packed or ground up. The selected technological regimes should provide temperature from 1500 °C in the melting chamber to 250 °C in the upper part in the pyrogas exit zone to prevent the flow-out of volatile compounds of a series of radionuclides and heavy metals from the furnace and to process the waste and merge slag melt without adding of fluxes. The fused slag is a basaltiform monolith, where the content of aluminum oxide reaches 28%; silicon oxide up to 56%; sodium oxide from 2.5 to 11 %. The resulting radioactive slag is extremely resistant to the chemical influence. The pyrogas produced in the shaft furnace will have a heating value of about 5 MJ/nm3. This allows, after initial heating by plasmatron, maintaining the required temperature in the combustion chamber due to the heat released during combustion of the pyrogas, when the plasma heating source is switched off, and burning the resin and soot effectively. It is proved that the plasma technology for RAW reprocessing allows a significant reduction in waste volumes and waste placement for long-term storage with the most efficient use of storage facilities.


2013 ◽  
Vol 805-806 ◽  
pp. 654-659 ◽  
Author(s):  
Xin Jiang ◽  
Lin Wang ◽  
Feng Man Shen

Coke constitutes the major portion of ironmaking cost and its production causes the severe environmental concerns. So lower energy consumption, lower CO2 emission and waste recycling are driving the iron and steel industry to develop alternative, or coke-free, ironmaking process. Midrex and HYL Energiron are the leading technologies in shaft furnace direct reduction, and they account for about 76% of worldwide production. They are the most competitive ways to obtain high quality direct reduced iron (DRI) for steelmaking. Therefore, in the present paper, some detailed information about these two processes are given. Much attention has been paid on process scheme, the feedstock, DRI product, heat recovery, reforming gas, hot discharge and transportation, and by-product emission. Its very important for direct reduction development in both natural gas-rich counties and natural gas-poor counties.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 922 ◽  
Author(s):  
Fabrice Patisson ◽  
Olivier Mirgaux

A new route for making steel from iron ore based on the use of hydrogen to reduce iron oxides is presented, detailed and analyzed. The main advantage of this steelmaking route is the dramatic reduction (90% off) in CO2 emissions compared to those of the current standard blast-furnace route. The first process of the route is the production of hydrogen by water electrolysis using CO2-lean electricity. The challenge is to achieve massive production of H2 in acceptable economic conditions. The second process is the direct reduction of iron ore in a shaft furnace operated with hydrogen only. The third process is the melting of the carbon-free direct reduced iron in an electric arc furnace to produce steel. From mathematical modeling of the direct reduction furnace, we show that complete metallization can be achieved in a reactor smaller than the current shaft furnaces that use syngas made from natural gas. The reduction processes at the scale of the ore pellets are described and modeled using a specific structural kinetic pellet model. Finally, the differences between the reduction by hydrogen and by carbon monoxide are discussed, from the grain scale to the reactor scale. Regarding the kinetics, reduction with hydrogen is definitely faster. Several research and development and innovation projects have very recently been launched that should confirm the viability and performance of this breakthrough and environmentally friendly ironmaking process.


2011 ◽  
Vol 284-286 ◽  
pp. 1232-1236
Author(s):  
Zhao Cai Wang ◽  
Man Sheng Chu ◽  
Shi Qiang Chen ◽  
Zheng Gen Liu ◽  
Jue Tang ◽  
...  

The metallurgical properties of oxidized pellets are of great importance to achieve high efficiency and smooth running of blast furnace and gas-based direct reduction shaft furnace. In this study, the new method of adding B-Mg compound additive has been put forth to improve metallurgical properties of pellets. The effects of adding B-Mg additive on the strength of green balls, cold compressive strength, reduction swelling, and the strength after reduction and cooling of oxidized pellets are investigated through the experiments and microstructure analysis. The results revealed that, the B-Mg additive has not-so-remarkable effects on the properties of green balls. The rational addition amount of B-Mg additive is 0.6 %, and B-Mg additive make it feasible to reduce roasting temperature of the pellets. High temperature properties show remarkable improvement with the increase of B-Mg additive amount, the RSI decrease from 14.7% to 7.17%, and the strength of pellets after reduction and cooling increase from 162.5 N to 650.8 N when the addition amount increases from 0 to 0.6%.


Sign in / Sign up

Export Citation Format

Share Document