Getting the Most From Raw Materials: Iron Unit Yield From Ore to Liquid Steel via the Direct Reduction/EAF Route

Author(s):  
V. Chevrier ◽  
C. Manning
Author(s):  
P.I. Loboda ◽  
Younes Razaz ◽  
S. Grishchenko

Purpose. To substantiate the efficiency of processing hematite raw materials at the Krivoy Rog Mining and Processing Plant of Oxidized Ores using the direct reduction technology itmk3®. Metodology. Analysis of the results of the itmk3® direct restoration technology developed by Kobe Steel Ltd., Japan and Hares Engineering GmbX, Austria, with a view to using it to process Krivbass hematite ores into granulated iron (so-called “nuggets”). Findings. The involvement in the production of hematite ores (oxidized quartzite) of Krivbass with high iron content, but with low magnetic properties for their processing into granular cast iron is grounded. Originality. The use of itmk3® direct reduction technology from Kobe Steel Ltd., Japan and Hares Engineering GmbH, Austria for the processing of Krivbass hematite ores into granular cast iron is justified for the first time. Practical value. The efficiency of the use of hematite ores (oxidized quartzite) has been substantiated, which can significantly reduce the costs in the mining cycle for the economical production of metallurgical products.


1977 ◽  
Vol 63 (14) ◽  
pp. 2269-2277
Author(s):  
Dentaro KANEKO ◽  
Yoshio KIMURA ◽  
Mamoru ONODA ◽  
Isao FUJITA

2012 ◽  
Vol 524-527 ◽  
pp. 2031-2036
Author(s):  
Yi Shan Li ◽  
Zheng Liang Xue ◽  
En Tang ◽  
Qiang Liu ◽  
Wei Xiang Wang ◽  
...  

In order to recover secondary iron-bearing dust, with converter sludge, mill scale, gravitational ash, casthouse ash as raw materials, high basicity carbon composite pellets are prepared to make iron nuggets through self-reduction at high temperature. The study demonstrates that: The effectively separation of iron and slag, naturally pulverization of the slag phase, and good surface quality of bigger, glosser and brighter iron nuggets can be obtained with reduction temperature 1400 °C,C/O molar ratio 1.1,as well as basicity above 1.8 in this process; The iron phase is not generated well and proportion of small size iron nuggets increases when C/O molar ratio is increased; With C/O molar ratio increases or temperature rises, CO generated increases in direct reduction, which strengthen the reducibility atmosphere in the pellets, beneficial to the processing of desulfuration and dephosphorization; Rising temperature accelerates the generation of molten iron, so that, the fixed carbon contacts with the molten iron longer, which increasing the carbon in iron nuggets. More carbon is provided for the carburizing reaction for the sake of increasing C/O molar ratio, as a result of making more carbon in iron nuggets.


2014 ◽  
Vol 881-883 ◽  
pp. 1297-1300
Author(s):  
Zhao Hui Zhang ◽  
Wei Ming Kong ◽  
Fu Cai Zhao ◽  
Xi Dong Xie

In this paper, two processes for V-Ti magnetite smelting were introduced, the processes respectively are the conventional blast furnace-BOF process and the high-profile rotary hearth furnace direct reduction technology. The two kinds of processes were introduced briefly, and the problems of the two processes in the production of V-Ti magnetite were analysed. The blast furnace-BOF process with the relatively perfect, large output, high energy efficiency can't make full use of Ti in the mineral resources, in this way, the resource was wasted and the environmental were polluted, and the existence of Ti in slag can also bring a series of problems in blast furnace production. Rotary hearth furnace direct reduction technology has the advantages of high reduction temperature, low product price, flexible selection for raw materials and reducing agent, while the large scale of equipment brings a series of problems to the production and design.


The steel industry, as a major consumer of coking coal and hydrocarbons, is exploring ways to reduce its dependence on these potentially expensive raw materials by making direct use of nuclear heat. Of the present two routes for producing steel, the major one (the hot metal route) employing the blast furnace which reduces iron ore to yield molten iron which is subsequently refined by basic oxygen steelmaking, does not lend itself to the application of nuclear heat; in the second (the cold metal route) recycled steel-or a substitute-is melted in an arc furnace where already today a proportion of the electricity used is generated in nuclear power stations. The development of ‘direct reduction’ processes allows iron ore to be converted to a solid pre-reduced iron product. In the conventional prereduction process, fossil fuels are used as both fuel and as chemical reductant. With nuclear heat, the fossil fuel-re-formed to a suitable reductant-is confined to the chemical role and not used as a source of heat. This reduction stage would be followed by arc melting, as in the present cold metal route. This basic process, which at present constitutes the minor route, could become the major one for the manufacture of steel in the long term. The lecture will discuss the various processes and outline a possible configuration for an eventual nuclear steelworks, together with some of the technical problems involved.


Author(s):  
A. N. Dmitriev ◽  
M. O. Zolotykh ◽  
G. Yu. Vit’kina ◽  
L. A. Marshuk ◽  
M. S. Yalunin

Development of a technology for obtaining direct reduction iron from titanium-magnetite ores, which will be the main ore base of the Ural ferrous metallurgy in the future, is one of the urgent tasks of metallurgical science. The world and domestic experience of the development of direct iron reduction processes, which are the most environmentally friendly of all existing methods of obtaining iron from ore considered. It was shown that the technology of metallization of iron ore materials in the Midrex shaft furnace has received the most widespread application. It is noted that the accumulated experience of using Midrex technology in Russian Federation will allow increasing the production of metallurgical raw materials with a reduced carbon footprint. An algorithm and a block diagram for calculating technical and economic indicators of the metallization process for the Midrex process shaft furnace are described. A methodology for calculating material and thermal balance of the Midrex process has been developed, taking into account the use of iron ore raw materials containing vanadium and titanium in the charge. On its basis, an algorithm was developed and a mathematical model of the metallization process was implemented, calculations of the metallization process of titanium-magnetite pellets obtained from the ores of the Kachkanar deposit in the Midrex mine furnace were performed. A comparison of the indicators of the metallization process of titanomagnetite pellets carried out in the shaft furnace of JSC “OEMK named after A.A. Ugarov” and obtained using the created software product showed satisfactory convergence of the results.


2008 ◽  
Vol 368-372 ◽  
pp. 1099-1103 ◽  
Author(s):  
Li Yan ◽  
Gang Qin Shao ◽  
Z. Xiong ◽  
Xiao Liang Shi ◽  
Xing Long Duan ◽  
...  

The transition-metal carbide cemented by metal has excellent combined properties. In this study, cermets were prepared by vacuum sintering from carbide-metal composite powders. The transition- metal oxides (Cr2O3, MoO3, V2O5, Nb2O5 and TiO2), cementing-metal oxides (Co3O4 and NiO), and carbon black were used as raw materials to pre-synthesize composite powders such as Cr3C2-Co, Mo2C-Co, VC-Co, NbC-Co and TiC-Ni, by a direct reduction and carburization process in vacuum. Results show that the participation of Co3O4 and NiO as well as the vacuum circumstance were greatly propitious to the carburization of transition-metal oxides into carbides. The carbothermal condition was greatly improved by the direct reduction and carburization process.


2020 ◽  
Vol 988 ◽  
pp. 36-41
Author(s):  
Andinnie Juniarsih ◽  
Anistasia Milandia ◽  
Actur Saktianto ◽  
Suryana

There are two types of iron resources such as primary iron ore and iron sand. In general, primary iron ores use as raw materials in iron and steel making and can reduce directly. In Direct reduction process, Fe2O3 (hematite) is converted to metallic iron by the removal of oxygen. This work presents a heat transfer rate study for direct reduction process of iron ore cylindrical briquette. An investigation has been carried out of different reduction parameter such as different sizes cylindrical geometry over temperatures ranging from 700°C to 1100°C for reaction time from 10 minutes to 1 hour. The result was indicated that the value of the heat transfer rate decreases in the core and outer parts of the cylinder briquettes.


2020 ◽  
Vol 10 (13) ◽  
pp. 4670 ◽  
Author(s):  
Theofani Tzevelekou ◽  
Paraskevi Lampropoulou ◽  
Panagiota P. Giannakopoulou ◽  
Aikaterini Rogkala ◽  
Petros Koutsovitis ◽  
...  

A pyrometallurgical process was developed for the recycling of Ni bearing dusts and laterite ore fines by direct reduction smelting in DC (direct current) arc furnace. In the course of the performed industrial trials, besides the Ni-recovery in the liquid bath, slag composition was deliberately adjusted in order to produce a series of metallurgical slags with different chemical and mineralogical composition. The aim of this study was to investigate their suitability as clinker substitute in cement manufacturing. Examined parameters were slag FeOx content, basicity and applied cooling media (air, water cooling). A series of composite Portland and slag cements were manufactured in laboratory scale incorporating 20% and 40% of each slag, respectively; the rest being clinker of OPC (ordinary Portland cement) and 5% gypsum. The extended mineralogical analysis and microstructural properties of the produced slags were examined and correlated with the properties of the produced cements. The physical and mechanical characteristics of all examined cement products were found to meet the requirements of the regulation set for cements. The present research revealed that the most critical parameter in the compressive strength development of the slag cements is the mineralogical composition of the slag. Even in cases where rapid cooling to obtain glassy matrix is not feasible, adjustment of slag analysis to obtain mineralogical phases similar to those met in clinker of OPC, even at higher FeO contents (up to ~21wt.%), can result in production of slag with considerable latent hydraulic properties. These results indicate that there is potentially space for adjustments in conventional EAF (electric arc furnace) steel slags composition to allow for their wider use in cement manufacturing with significant environmental and economic benefits resulting from the reduction of energy requirements, CO2 emissions and natural raw materials consumption.


Sign in / Sign up

Export Citation Format

Share Document