scholarly journals The Effect of High-Temperature Solution Treatment on the Toughness of 10Ni High-Toughness Ultra-High Strength Steel

1978 ◽  
Vol 64 (5) ◽  
pp. 585-594
Author(s):  
Hiroshi YADA ◽  
Sumitoshi ANRAKU
2001 ◽  
Vol 109 (1-2) ◽  
pp. 174-180 ◽  
Author(s):  
Jerry H Sokolowski ◽  
Mile B Djurdjevic ◽  
Christopher A Kierkus ◽  
Derek O Northwood

2019 ◽  
Vol 34 (21) ◽  
pp. 3725-3734
Author(s):  
Xinsheng Huang ◽  
Yasumasa Chino ◽  
Hironori Ueda ◽  
Masashi Inoue ◽  
Futoshi Kido ◽  
...  

Abstract


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Bingwang Lei ◽  
Gaoqiang Chen ◽  
Kehong Liu ◽  
Xin Wang ◽  
Xiaomei Jiang ◽  
...  

High-temperature plastic flow is the underlying process that governs the product quality in many advanced metal manufacturing technologies, such as extrusion, rolling, and welding. Data and models on the high-temperature flow behavior are generally desired in the design of these manufacturing processes. In this paper, quantitative constitutive analysis is carried out on 3Cr-1Si-1Ni ultra-high strength steel, which sheds light on the mathematic relation between the flow stress and the thermal-mechanical state variables, such as temperature, plastic strain, and strain rate. Particularly, the hyperbolic-sine equation in combination with the Zener-Hollomon parameter is shown to be successful in representing the effect of temperature and strain rate on the flow stress of the 3Cr-1Si-1Ni steel. It is found that the flow stress of the 3Cr-1Si-1Ni steel is significantly influenced by strain. The strain-dependence on flow stress is not identical at different temperatures and strain rates. In the constitutive model, the influence of strain in the constitutive analysis is successfully implemented by introducing strain-dependent constants for the constitutive equations. Fifth-order polynomial equations are employed to fit the strain-dependence of the constitutive constant. The proposed constitutive equations which considers the compensation of strain is found to accurately predict flow stress of the 3Cr-1Si-1Ni steel at the temperatures ranging from 800 °C to 1250 °C, strain rate ranging from 0.01/s to 10/s, and strain ranging from 0.05 to 0.6.


Author(s):  
N. S. Cheruvu ◽  
V. P. Swaminathan ◽  
C. D. Kinney

Degradation of microstructure and mechanical properties of a service run GTD-111 DS blade was evaluated. The blade was coated with a CoCrAlY coating (GT-29) and had operated on a GE Model MS 5002 engine for 54,850 hours. To recover the microstructure of the degraded blade, the effect of solution treatment temperature on the microstructure and properties was evaluated. The blanks removed from the airfoil tip section were given a commonly used partial solution treatment 2050°F (1120°C) for GTD-111 and a high temperature solution treatment 2175°F (1190°C) prior to the partial solution and aging treatments. Microstructure and creep test results of these heat treated specimens revealed that the high temperature solution treatment was necessary to recover the microstructure and properties of in-service degraded GTD-111 DS buckets.


2005 ◽  
Vol 55 (4) ◽  
pp. 159-163 ◽  
Author(s):  
Yutaka IRINOUCHI ◽  
Hiroyuki TODA ◽  
Takayuki SAKAI ◽  
Toshiro KOBAYASHI ◽  
Lei WANG

Sign in / Sign up

Export Citation Format

Share Document