Excess postexercise oxygen consumption and fat oxidation in recreationally trained men following exercise of equal energy expenditure: comparisons of spinning and constant endurance exercise

Author(s):  
Marcin Luszczyk ◽  
Damian J. Flis ◽  
Ilona Szadejko ◽  
Radoslaw Laskowski ◽  
Wieslaw Ziolkowski
2002 ◽  
Vol 92 (3) ◽  
pp. 1045-1052 ◽  
Author(s):  
Edward L. Melanson ◽  
Teresa A. Sharp ◽  
Helen M. Seagle ◽  
Tracy J. Horton ◽  
William T. Donahoo ◽  
...  

The aim of this study was to determine the effects of exercise at different intensities on 24-h energy expenditure (EE) and substrate oxidation. Sixteen adults (8 men and 8 women) were studied on three occasions [sedentary day (Con), a low-intensity exercise day (LI; 400 kcal at 40% of maximal oxygen consumption) and a high-intensity exercise day (HI; 400 kcal at 70% of maximal oxygen consumption)] by using whole room indirect calorimetry. Both 24-h EE and carbohydrate oxidation were significantly elevated on the exercise days (Con < LI = HI), but 24-h fat oxidation was not different across conditions. Muscle enzymatic profile was not consistently related to 24-h fat or carbohydrate oxidation. With further analysis, it was found that, compared with men, women sustained slightly higher rates of 24-h fat oxidation (mg · kg FFM−1· min−1) and had a muscle enzymatic profile favoring fat oxidation. It is concluded that exercise intensity has no effect on 24-h EE or nutrient oxidation. Additionally, it appears that women may sustain slightly greater 24-h fat oxidation rates during waking and active periods of the day.


2017 ◽  
Vol 42 (9) ◽  
pp. 986-993 ◽  
Author(s):  
Laurel A. Littlefield ◽  
Zacharias Papadakis ◽  
Katie M. Rogers ◽  
José Moncada-Jiménez ◽  
J. Kyle Taylor ◽  
...  

Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg−1·min−1; body mass index, 31.8 ± 4.5 kg/m2) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%–50% oxygen uptake reserve (LI), high-intensity exercise at 70%–80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.


1997 ◽  
Vol 82 (2) ◽  
pp. 661-666 ◽  
Author(s):  
J. Laforgia ◽  
R. T. Withers ◽  
N. J. Shipp ◽  
C. J. Gore

Laforgia, J., R. T. Withers, N. J. Shipp, and C. J. Gore.Comparison of energy expenditure elevations after submaximal and supramaximal running. J. Appl. Physiol. 82(2): 661–666, 1997.—Although exercise intensity has been identified as a major determinant of the excess postexercise oxygen consumption (EPOC), no studies have compared the EPOC after submaximal continuous running and supramaximal interval running. Eight male middle-distance runners [age = 21.1 ± 3.1 (SD) yr; mass = 67.8 ± 5.1 kg; maximal oxygen consumption (V˙o 2 max) = 69.2 ± 4.0 ml ⋅ kg−1 ⋅ min−1] therefore completed two equated treatments of treadmill running (continuous running: 30 min at 70%V˙o 2 max; interval running: 20 × 1-min intervals at 105%V˙o 2 max with intervening 2-min rest periods) and a control session (no exercise) in a counterbalanced research design. The 9-h EPOC values were 6.9 ± 3.8 and 15.0 ± 3.3 liters ( t-test: P = 0.001) for the submaximal and supramaximal treatments, respectively. These values represent 7.1 and 13.8% of the net total oxygen cost of both treatments. Notwithstanding the higher EPOC for supramaximal interval running compared with submaximal continuous running, the major contribution of both to weight loss is therefore via the energy expended during the actual exercise.


Sign in / Sign up

Export Citation Format

Share Document