scholarly journals Hydrodynamic Analysis of Oscillating Water Column Using CFD Code

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ajoko TJ
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3403 ◽  
Author(s):  
Kostas Belibassakis ◽  
Alexandros Magkouris ◽  
Eugen Rusu

In this work, a novel Boundary Element Method (BEM) is developed and applied to the investigation of the performance of Oscillating Water Column (OWC) systems, taking into account the interaction of the incident wave field with the bottom topography. The modelling includes the effect of additional upwave walls and barriers used to modify the resonance characteristics of the device and improve its performance as the U-OWC configuration. Numerical results illustrating the effects of depth variation in conjunction with other parameters—such as chamber dimensions as well as the parameters associated with the turbine and power take-off system—on the device performance are presented and discussed. Finally, a case study is presented regarding the potential installation of an OWC in a selected port site in the Black Sea, characterized by a good wave energy potential, on the coast of Romania.


2015 ◽  
Vol 1 (4) ◽  
pp. 405-419 ◽  
Author(s):  
Harry B. Bingham ◽  
Damien Ducasse ◽  
Kim Nielsen ◽  
Robert Read

2020 ◽  
Vol 14 (3) ◽  
pp. 7082-7093
Author(s):  
Jahirwan Ut Jasron ◽  
Sudjito Soeparmani ◽  
Lilis Yuliati ◽  
Djarot B. Darmadi

The hydrodynamic performance of oscillating water column (OWC) depends on the depth of the water, the size of the water column and its arrangement, which affects the oscillation of the water surface in the column. An experimental method was conducted by testing 4 water depths with wave periods of 1-3 s. All data recorded by the sensor is then processed and presented in graphical form. The research focused on analyzing the difference in wave power absorption capabilities of the three geometric types of OWC based on arrangements of water columns. The OWC devices designed as single water column, the double water column in a series arrangement which was perpendicular to the direction of wave propagation, and double water column in which the arrangement of columns was parallel to the direction of wave propagation. This paper discussed several factors affecting the amount of power absorbed by the device. The factors are the ratio of water depth in its relation to wavelength (kh) and the inlet openings ratio (c/h) of the devices. The test results show that if the water depth increases in the range of kh 0.7 to 0.9, then the performance of the double chamber oscillating water column (DCOWC) device is better than the single chamber oscillating water column (SCOWC) device with maximum efficiency for the parallel arrangement 22,4%, series arrangement 20.8% and single column 20.7%. However, when referring to c/h, the maximum energy absorption efficiency for a single column is 27.7%, double column series arrangement is 23.2%, and double column parallel arrangement is 29.5%. Based on the results of the analysis, DCOWC devices in parallel arrangement showed the ability to absorb better wave power in a broader range of wave frequencies. The best wave of power absorption in the three testing models occurred in the wave period T = 1.3 seconds.


Sign in / Sign up

Export Citation Format

Share Document