New Results for the Stability Analysis of Time-Varying Linear Systems Part I: The Case of Reduced Systems

Author(s):  
J. Zhu ◽  
C. D. Johnson
Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
D. Santiago ◽  
E. Slawiñski ◽  
V. Mut

This paper analyzes the stability of a trilateral teleoperation system of a mobile robot. This type of system is nonlinear, time-varying, and delayed and includes a master-slave kinematic dissimilarity. To close the control loop, three P+d controllers are used under a position master/slave velocity strategy. The stability analysis is based on Lyapunov-Krasovskii theory where a functional is proposed and analyzed to get conditions for the control parameters that assure a stable behavior, keeping the synchronism errors bounded. Finally, the theoretical result is verified in practice by means of a simple test, where two human operators both collaboratively and simultaneously drive a 3D simulator of a mobile robot to achieve an established task on a remote shared environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

This paper deals with the problems ofℋ∞performance and stability analysis for linear systems with interval time-varying delays. It is assumed that the parameter uncertainties are of stochastic properties to represent random change of various environments. By constructing a newly augmented Lyapunov-Krasovskii functional, less conservative criteria of the concerned systems are introduced with the framework of linear matrix inequalities (LMIs). Four numerical examples are given to show the improvements over the existing ones and the effectiveness of the proposed methods.


Author(s):  
Mikołaj Busłowicz ◽  
Andrzej Ruszewski

Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systemsAsymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.


2017 ◽  
Vol 36 (2) ◽  
pp. 379-398
Author(s):  
Xu-Guang Li ◽  
Silviu-Iulian Niculescu ◽  
Arben Çela

AbstractIn this article, we study the stability of linear systems with multiple (incommensurate) delays, by extending a recently proposed frequency-sweeping approach. First, we consider the case where only one delay parameter is free while the others are fixed. The complete stability w.r.t. the free delay parameter can be systematically investigated by proving an appropriate invariance property. Next, we propose an iterative frequency-sweeping approach to study the stability under any given multiple delays. Moreover, we may effectively analyse the asymptotic behaviour of the critical imaginary roots (if any) w.r.t. each delay parameter, which provides a possibility for stabilizing the system through adjusting the delay parameters. The approach is simple (graphical test) and can be applied systematically to the stability analysis of linear systems including multiple delays. A deeper discussion on its implementation is also proposed. Finally, various numerical examples complete the presentation.


Sign in / Sign up

Export Citation Format

Share Document