Distance of a Controllable System from the Nearest Uncontrollable One

Author(s):  
P. Misra
Keyword(s):  
2021 ◽  
pp. 095745652110015
Author(s):  
Zhijian Xu ◽  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Wenyuan Xu

The in-car voice controllable system has become an almost standard feature in smart cars. Prior work shows that the voice controllable system is vulnerable to light commands attack which uses the laser as the medium to inject voice commands. In this article, we first reproduced the light commands attack on acoustic isolated in-car voice controllable system under several scenarios with a lightweight solution. We validate the feasibility of injecting the malicious voice command through a window into the microphone by modulating a laser beam. Then, we tested a variety of mainstream countermeasures such as placing sunscreen film on the glass panel to see whether it can protect the microphone from being attacked. Surprisingly, we find that the lower light transmittance of sunscreen film is the lower the success rate of the attack. Experiment results also show that when the transmittance rate of sun film is 50% which is the darkest sunscreen film that can be applied, the attacking success rate decreased by up to 0.4. We also explore the impact of attack angle by changing the incidence angle of the laser beam and the results demonstrate that light commands is sensitive to attack angle and the successful angle range is ± 15°. Finally, we propose a series of hardware-based protection schemes against light commands attacks.


2021 ◽  
pp. 1-13
Author(s):  
Matteo Bottin ◽  
Giulio Rosati

Abstract Under-actuated robots are very interesting in terms of cost and weight since they can result in a state-controllable system with a number of actuators lower than the number of joints. In this paper, a comparison between an under-actuated planar 3 degrees of freedom (DOF) robot and a comparable fully-actuated 2 degrees of freedom robot is presented, mainly focusing on the performances in terms of trajectories, actuator torques, and vibrations. The under-actuated system is composed of 2 active rotational joints followed by a passive rotational joint equipped with a torsional spring. The fully-actuated robot is inertial equivalent to the under-actuated manipulator: the last link is equal to the sum of the last two links of the under-actuated system. Due to the conditions on the inertia distribution and spring placement, in a simple point-to-point movement the last passive joint starts and ends in a zero-value configuration, so the 3 DOF robot is equivalent, in terms of initial and final configuration, to the 2 DOF fully-actuated robot, thus they can be compared. Results show how while the fully actuated robot is better in terms of reliable trajectory and actuator torques, the under-actuated robot wins in flexibility and vibration behavior.


2015 ◽  
Vol 66 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Alexandr Yu. Gornov ◽  
Tatiana S. Zarodnyuk ◽  
Evgeniya A. Finkelstein ◽  
Anton S. Anikin

1981 ◽  
Vol 33 (2) ◽  
pp. 355-362 ◽  
Author(s):  
T. G. KOUSSlOURIS ◽  
A. G. BAKIRTZIS

Sign in / Sign up

Export Citation Format

Share Document