controllable system
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 11 (22) ◽  
pp. 11022
Author(s):  
Natália Andrýsková ◽  
Paul Sourivong ◽  
Melánia Babincová ◽  
Mária Šimaljaková

Electrospun polycaprolactone nanofibers with embedded magnetic nanoparticles were developed for use in the topical delivery of antipsoriatic drugs. To test a hydrophobic drug, a tazarotene has been used, which is an efficient retinoid derivative. Such a smart hyperthermia nanofiber system with self-generated heat from the incorporated magnetic nanoparticles induced drug release in response to on–off switching of alternating magnetic fields for the delivery of tazarotene through the skin, as quantified using Franz cells. This highly efficient external field-controllable system with minimal skin irritation could create a new avenue for the topical therapy of psoriasis.


2021 ◽  
pp. 1-13
Author(s):  
Matteo Bottin ◽  
Giulio Rosati

Abstract Under-actuated robots are very interesting in terms of cost and weight since they can result in a state-controllable system with a number of actuators lower than the number of joints. In this paper, a comparison between an under-actuated planar 3 degrees of freedom (DOF) robot and a comparable fully-actuated 2 degrees of freedom robot is presented, mainly focusing on the performances in terms of trajectories, actuator torques, and vibrations. The under-actuated system is composed of 2 active rotational joints followed by a passive rotational joint equipped with a torsional spring. The fully-actuated robot is inertial equivalent to the under-actuated manipulator: the last link is equal to the sum of the last two links of the under-actuated system. Due to the conditions on the inertia distribution and spring placement, in a simple point-to-point movement the last passive joint starts and ends in a zero-value configuration, so the 3 DOF robot is equivalent, in terms of initial and final configuration, to the 2 DOF fully-actuated robot, thus they can be compared. Results show how while the fully actuated robot is better in terms of reliable trajectory and actuator torques, the under-actuated robot wins in flexibility and vibration behavior.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Haitham Alghraby ◽  
Radhi A. Zaboon ◽  
Naseif J. Al-Jawari

This paper deals with the problem of controllability and stabilizability of the perturbed linear time-varying nonlocal system defined in some suitable real Hilbert space. The aim of this paper is to show that any globally null-controllable system is completely stabilizability and conversely, under some additional conditions the complete stabilizability implies global null-controllability.


2021 ◽  
pp. 095745652110015
Author(s):  
Zhijian Xu ◽  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Wenyuan Xu

The in-car voice controllable system has become an almost standard feature in smart cars. Prior work shows that the voice controllable system is vulnerable to light commands attack which uses the laser as the medium to inject voice commands. In this article, we first reproduced the light commands attack on acoustic isolated in-car voice controllable system under several scenarios with a lightweight solution. We validate the feasibility of injecting the malicious voice command through a window into the microphone by modulating a laser beam. Then, we tested a variety of mainstream countermeasures such as placing sunscreen film on the glass panel to see whether it can protect the microphone from being attacked. Surprisingly, we find that the lower light transmittance of sunscreen film is the lower the success rate of the attack. Experiment results also show that when the transmittance rate of sun film is 50% which is the darkest sunscreen film that can be applied, the attacking success rate decreased by up to 0.4. We also explore the impact of attack angle by changing the incidence angle of the laser beam and the results demonstrate that light commands is sensitive to attack angle and the successful angle range is ± 15°. Finally, we propose a series of hardware-based protection schemes against light commands attacks.


Author(s):  
Elena A. Kaledina

This paper considers a multi-connected controllable system with non-overlapping decompositions. Given that most of the control laws are implemented on digital controllers, the control of the system is implemented as a piecewise-constant function. Multiconnectivity of the system, in turn, makes it impossible to use centralized control. Every isolated subsystem must work stably, and intersystem connections can have a destabilizing effect. In this case, piecewise-constant control is constructed as two-level, i.e. in the form of a sum of local and global control. Local control stabilizes the equilibrium positions of individual linear subsystems. Global control acts on intersystem connections. Conditions are obtained under which local control stabilizes linear subsystems, and the equilibrium position of the original multi-connected system is asymptotically stable in part of variables.


Author(s):  
Haokang Wen ◽  
Fengzhi Dai ◽  
Jichao Zhao ◽  
Hongbo Hao ◽  
Hong Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document