Evaluation and defense of light commands attacks against voice controllable systems in smart cars

2021 ◽  
pp. 095745652110015
Author(s):  
Zhijian Xu ◽  
Guoming Zhang ◽  
Xiaoyu Ji ◽  
Wenyuan Xu

The in-car voice controllable system has become an almost standard feature in smart cars. Prior work shows that the voice controllable system is vulnerable to light commands attack which uses the laser as the medium to inject voice commands. In this article, we first reproduced the light commands attack on acoustic isolated in-car voice controllable system under several scenarios with a lightweight solution. We validate the feasibility of injecting the malicious voice command through a window into the microphone by modulating a laser beam. Then, we tested a variety of mainstream countermeasures such as placing sunscreen film on the glass panel to see whether it can protect the microphone from being attacked. Surprisingly, we find that the lower light transmittance of sunscreen film is the lower the success rate of the attack. Experiment results also show that when the transmittance rate of sun film is 50% which is the darkest sunscreen film that can be applied, the attacking success rate decreased by up to 0.4. We also explore the impact of attack angle by changing the incidence angle of the laser beam and the results demonstrate that light commands is sensitive to attack angle and the successful angle range is ± 15°. Finally, we propose a series of hardware-based protection schemes against light commands attacks.

2008 ◽  
Vol 47 (04) ◽  
pp. 153-166 ◽  
Author(s):  
I. Weber ◽  
W. Eschner ◽  
F. Sudbrock ◽  
M. Schmidt ◽  
M. Dietlein ◽  
...  

SummaryAim: This study was performed to analyse the impact of the choice of antithyroid drugs (ATD) on the outcome of ablative radioiodine therapy (RIT) in patients with Graves' disease. Patients, material, methods: A total of 571 consecutive patients were observed for 12 months after RIT between July 2001 and June 2004. Inclusion criteria were the confirmed diagnosis of Graves' disease, compensation of hyperthyroidism and withdrawal of ATD two days before preliminary radioiodine-testing and RIT. The intended dose of 250 Gy was calculated from the results of the radioiodine test and the therapeutically achieved dose was measured by serial uptake measurements. The end-point measure was thyroid function 12 months after RIT; success was defined as elimination of hyperthyroidism. The pretreatment ATD was retrospectively correlated with the results achieved. Results: Relief from hyperthyroidism was achieved in 96 % of patients. 472 patients were treated with carbimazole or methimazole (CMI) and 61 with propylthiouracil (PTU). 38 patients had no thyrostatic drugs (ND) prior to RIT. The success rate was equal in all groups (CMI 451/472; PTU 61/61; ND 37/38; p=0.22). Conclusion: Thyrostatic treatment with PTU achieves excellent results in ablative RIT, using an accurate dosimetric approach with an achieved post-therapeutic dose of more than 200 Gy.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Yuxi Zhao ◽  
Rongcheng Liu ◽  
Fan Yan ◽  
Dawei Zhang ◽  
Junjin Liu

The windblown sand-induced degradation of glass panels influences the serviceability and safety of these panels. In this study, the degradation of glass panels subject to windblown sand with different impact velocities and impact angles was studied based on a sandblasting test simulating a sandstorm. After the glass panels were degraded by windblown sand, the surface morphology of the damaged glass panels was observed using scanning electron microscopy, and three damage modes were found: a cutting mode, smash mode, and plastic deformation mode. The mass loss, visible light transmittance, and effective area ratio values of the glass samples were then measured to evaluate the effects of the windblown sand on the panels. The results indicate that, at high abrasive feed rates, the relative mass loss of the glass samples decreases initially and then remains steady with increases in impact time, whereas it increases first and then decreases with an increase in impact angle such as that for ductile materials. Both visible light transmittance and effective area ratio decrease with increases in the impact time and velocities. There exists a positive linear relationship between the visible light transmittance and effective area ratio.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2064
Author(s):  
Jin-Hee Kim ◽  
Seong-Koo Son ◽  
Gyeong-Seok Choi ◽  
Young-Tag Kim ◽  
Sung-Bum Kim ◽  
...  

Recently, there have been significant concerns regarding excessive energy use in office buildings with a large window-to-wall ratio (WWR) because of the curtain wall structure. However, prior research has confirmed that the impact of the window area on energy consumption varies depending on building size. A newly proposed window-to-floor ratio (WFR) correlates better with energy consumption in the building. In this paper, we derived the correlation by analyzing a simulation using EnergyPlus, and the results are as follows. In the case of small buildings, the results of this study showed that the WWR and energy requirement increase proportionally, and the smaller the size is, the higher the energy sensitivity will be. However, results also confirmed that this correlation was not established for buildings approximately 3600 m2 or larger. Nevertheless, from analyzing the correlation between the WFR and the energy requirements, it could be deduced that energy required increased proportionally when the WFR was 0.1 or higher. On the other hand, the correlation between WWR, U-value, solar heat gain coefficient (SHGC), and material property values of windows had little effect on energy when the WWR was 20%, and the highest effect was seen at a WWR of 100%. Further, with an SHGC below 0.3, the energy requirement decreased with an increasing WWR, regardless of U-value. In addition, we confirmed the need for in-depth research on the impact of the windows’ U-value, SHGC, and WWR, and this will be verified through future studies. In future studies on window performance, U-value, SHGC, visible light transmittance (VLT), wall U-value as sensitivity variables, and correlation between WFR and building size will be examined.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 391
Author(s):  
Shuji Murakami ◽  
Tomoyuki Yokose ◽  
Daiji Nemoto ◽  
Masaki Suzuki ◽  
Ryou Usui ◽  
...  

A sufficiently large tissue sample is required to perform next-generation sequencing (NGS) with a high success rate, but the majority of patients with advanced non-small-cell lung cancer (NSCLC) are diagnosed with small biopsy specimens. Biopsy samples were collected from 184 patients with bronchoscopically diagnosed NSCLC. The tissue surface area, tumor cell count, and tumor content rate of each biopsy sample were evaluated. The impact of the cut-off criteria for the tissue surface area (≥1 mm2) and tumor content rate (≥30%) on the success rate of the Oncomine Dx Target Test (ODxTT) was evaluated. The mean tissue surface area of the transbronchial biopsies was 1.23 ± 0.85 mm2 when small endobronchial ultrasonography with a guide sheath (EBUS-GS) was used, 2.16 ± 1.49 mm2 with large EBUS-GS, and 1.81 ± 0.75 mm2 with endobronchial biopsy (EBB). The proportion of samples with a tissue surface area of ≥1 mm2 was 48.8% for small EBUS-GS, 79.2% for large EBUS-GS, and 78.6% for EBB. Sixty-nine patients underwent ODxTT. The success rate of DNA sequencing was 84.1% and that of RNA sequencing was 92.7% over all patients. The success rate of DNA (RNA) sequencing was 57.1% (71.4%) for small EBUS-GS (n = 14), 93.4% (96.9%) for large EBUS-GS (n = 32), 62.5% (100%) for EBB (n = 8), and 100% (100%) for endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) (n = 15). Regardless of the device used, a tissue surface area of ≥ 1 mm2 is adequate for samples to be tested with NGS.


Author(s):  
Kristie Huda ◽  
Kenneth F. Swan ◽  
Cecilia T. Gambala ◽  
Gabriella C. Pridjian ◽  
Carolyn L. Bayer

AbstractFunctional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue’s scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.


2019 ◽  
Vol 10 (01) ◽  
pp. 028-032
Author(s):  
Nisar Ahmad Shah ◽  
Showkat Ahmad Kadla ◽  
Asif Iqbal Shah ◽  
Bilal Ahmad Khan ◽  
Inaam Ul Haq ◽  
...  

ABSTRACT Background and Aims: Foreign-body ingestion is a common phenomenon, especially in children. In normal adults, foreign-body ingestion is usually accidental and mostly ingestion occurs with food and impaction is a result of structural abnormalities of the upper gastrointestinal tract (UGIT). However, accidental ingestion of nonfood products is unusual; especially ingestion of pins (scarf or safety pins) and needles is unknown. We come across ingestion of these unusual/sharp foreign bodies routinely from the past few years. The aim of this study was to observe, over a period of 1 year, the spectrum of nonfood or true foreign-body ingestion in our community and to see the impact of an early endoscopy on outcome or retrieval of the ingested objects. Materials and Methods: In a prospective observational study, we studied the profile of foreign-body ingestion in normal individuals of all ages and both sexes, excluding the individuals with any structural abnormalities of the gut and the people with psychiatric ailment. Results: Of total 51 patients with foreign-body ingestion, 42 (82%) were 20 or <20 years of age with females constituting 86.3% of the total and males constituting only 13.7%. Foreign bodies ingested included 38 pins (74.5%), seven coins (13.7%), four needles (7.8%), and one denture and a nail (2%) each. Overall 26 (51%) foreign bodies were seen in UGIT (within reach of retrieval) at the time of endoscopy and all of them were retrieved. Nineteen (37.3%) patients reported within 6 h of ingestion, and majority of them (16 = 84.2%) had foreign bodies within UGIT and all of them were removed. Those patients (n = 32; 62.7%) who reported beyond 6 h, only 10 (31.25%) had foreign bodies in UGIT as a result of which the success rate of removal in these patients was only 32%. Conclusion: Most of our patients were young females and the common foreign bodies ingested were sharp including scarf pins followed by coins and needles. The success rate of retrieval was high in those who reported within 6 h of ingestion of foreign body. The rate of retrieval was 100% if foreign body was found on esophagogastroduodenoscopy. Hence, we recommend an early endoscopy in these patients and some alternative to use of scarf pins.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (2) ◽  
pp. 30-36 ◽  
Author(s):  
Jeff Cheung ◽  
Jim Horwitz

The laser, as a source of “pure” energy in the form of monochromatic and coherent photons, is enjoying ever increasing popularity in diverse and broad applications from drilling micron-sized holes on semiconductor devices to guidance systems used in drilling a mammoth tunnel under the English Channel. In many areas such as metallurgy, medical technology, and the electronics industry, it has become an irreplaceable tool.Like many other discoveries, the various applications of the laser were not initially defined but were consequences of natural evolution led by theoretical studies. Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser beam-solid interactions. Experiments were undertaken to verify different theoretical models for this process. Later, these experiments became the pillars of many applications. Figure 1 illustrates the history of laser development from its initial discovery to practical applications. In this tree of evolution, Pulsed Laser Deposition (PLD) is only a small branch. It remained relatively obscure for a long time. Only in the last few years has his branch started to blossom and bear fruits in thin film deposition.Conceptually and experimentally, PLD is extremely simple, probably the simplest among all thin film growth techniques. Figure 2 shows a schematic diagram of this technique. It uses pulsed laser radiation to vaporize materials and to deposit thin films in a vacuum chamber. However, the beam-solid interaction that leads to evaporation/ablation is a very complex physical phenomenon. The theoretical description of the mechanism is multidisciplinary and combines equilibrium and nonequilibrium processes. The impact of a laser beam on the surface of a solid material, electromagnetic energy is converted first into electronic excitation and then into thermal, chemical, and even mechanical energy to cause evaporation, ablation, excitation, and plasma formation.


Sign in / Sign up

Export Citation Format

Share Document