Family of high-frequency op.-amp. models via complex curve fitting

1992 ◽  
Vol 73 (6) ◽  
pp. 1273-1278
Author(s):  
J. H. LILLY ◽  
P. B. ARONHIME ◽  
D. L. NELSON
1959 ◽  
Vol AC-4 (1) ◽  
pp. 37-43 ◽  
Author(s):  
E. C. Levy
Keyword(s):  

2012 ◽  
Vol 229-231 ◽  
pp. 1531-1534
Author(s):  
Hai Dan Zhang ◽  
Hu Bao ◽  
Den Gan Chen ◽  
Jing Yu

The design of low-pass and bandpass filters is often based on the leapfrog method which, in these cases, yields integrator-based structures. Using the leapfrog signal flow graph (SFG) for the simulation of high-pass filters leads to a differentiator-based structure which could be implemented by Gm-C or CCII conveniently. However, when we use Op amp RC integrators for good linearity, we have to use integrators, and not differentiators, for reasons related to the excessive noise behavior of the latter. This paper presents a new leapfrog SFG implementation by fully differential Op amp integrators, which combines good high-frequency properties with good noise properties. The direct SFG simulation method and single-ended output Op amp can also based on integrators, but all of them will lead to a relatively high circuit complexity and a high noise level. A design example is included, with comparisons of gain responses and noise densities.


2005 ◽  
Vol 15 (08) ◽  
pp. 2551-2558 ◽  
Author(s):  
ENIS GÜNAY ◽  
MUSTAFA ALÇI ◽  
FATMA YILDIRIM

In this paper, an experimental implementation of State Controlled Cellular Neural Network (SC-CNN) circuit using Current Feedback Op Amp (CFOA) is presented and its chaotic dynamics including high frequency performance are investigated by laboratory experiments. Depending on its significant advantages over the conventional voltage op amps (VOAs), without imposing any restrictions, the CFOAs have been used instead of the VOAs in SC-CNN circuit. Experimental results have shown that the proposed implementation has a capacity of higher frequency operation.


Sign in / Sign up

Export Citation Format

Share Document