Under Frequency Load Shedding Plan in Active Power Systems: Analysis and Innovative Proposals

Author(s):  
T. Baffa Scirocco ◽  
G. Bruno ◽  
L. Caciolli ◽  
G. Giannuzzi ◽  
R. Zaottini ◽  
...  
Author(s):  
H. H. Alhelou

It is critical for today's power system to remain in a state of equilibrium under normal conditions and severe disturbances. Power imbalance between the load and the generation can severely affect system stability. Therefore, it is necessary that these imbalance conditions be addressed in the minimum time possible. It is well known that power system frequency is directly proportional to the speed of rotation of synchronous machines and is also a function of the active power demand. As a consequence, when active power demand is greater than the generation, synchronous generators tends to slow down and the frequency decreases to even below threshold if not quickly addressed. One of the most common methods of restoring frequency is the use of under frequency load shedding (UFLS) techniques. In this chapter, load shedding techniques are presented in general but with special focus on UFLS.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


2021 ◽  
Author(s):  
Pavel Ilyushin ◽  
Aleksandr Kulikov ◽  
Konstantin Suslov ◽  
Aleksander Sevostyanov
Keyword(s):  

Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Sign in / Sign up

Export Citation Format

Share Document