Adaptive Robust Control for Flexible Spacecraft with LQR Vibration Suppression

Author(s):  
Chen Zhen ◽  
Du Jing ◽  
Liu Xiangdong ◽  
Lu Pingli
2021 ◽  
pp. 107754632110026
Author(s):  
Zeyu Yang ◽  
Jin Huang ◽  
Zhanyi Hu ◽  
Diange Yang ◽  
Zhihua Zhong

The coupling, nonlinearity, and uncertainty characteristics of vehicle dynamics make the accurate longitudinal and lateral control of an automated and connected vehicle platoon a tough task. Little research has been conducted to fully address the characteristics. By using the ideology of constraint-following control this article proposes an integrated longitudinal and lateral adaptive robust control methodology for a vehicle platoon with a bidirectional communication topology. The platoon control objectives contain the path tracking stability, the platoon internal stability, and the string stability. First, we establish the nonlinear kinematics path tracking model and the coupled vehicle longitudinal and lateral dynamical model that contains time-varying uncertainties. Second, we design a series of nonlinear equality constraints that directly guarantee the control objectives based on the kinematic relations. On this basis, an adaptive robust constraint-following control is proposed. It is shown that the control guarantees the uniform boundedness and the uniform ultimate boundedness of the constraint-following error and the uncertainty estimation error. Finally, simulation results are provided to validate the effectiveness of the proposed methodology.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


2013 ◽  
Vol 446-447 ◽  
pp. 1160-1164
Author(s):  
Sahar Bakhtiari Mojaz ◽  
Hamed Kashani

Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in structure and plays an important role in the vibratory response of it. For improving the performance of systems, many studies have been carried out to predict measure and enhance the energy dissipation of friction. This paper presents a new approach to vibration reduction of flexible spacecraft with enhancing the energy dissipation of frictional dampers. Spacecraft is modeled as a 3 degree of freedom mass-spring system which is controlled by a lead compensator and System responses to step function evaluated. Coulomb and Jenkins element has been used as vibration suppression mechanisms in joints and sensitivity of their performance to variations of spacecraft excitation amplitude and damper properties is analyzed. The relation between frictional force and displacement derived and used in optimization of control performance. Responses of system and control effort needed for the vibration control are compared for these two frictional joints. It is shown that attitude control effort reduces, significantly with coulomb dampers and response of system improves. On the other hand, due to stick-slip phenomena in Jenkins element, we couldn’t expect the same performance from Jenkins damper.


2014 ◽  
Vol 37 (3) ◽  
pp. 1027-1033 ◽  
Author(s):  
Ya’nan Yu ◽  
Xiuyun Meng ◽  
Keyong Li ◽  
Fenfen Xiong

Sign in / Sign up

Export Citation Format

Share Document