An sEMG-Driven Identification of Human Upper Limb Stiffness and Its Application in Variable Impedance Control

Author(s):  
Leyun Hu ◽  
Tinghan Xu ◽  
Ziyun Zhao ◽  
Di-Hua Zhai ◽  
Yuanqing Xia
2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Author(s):  
Zhi-Qiang Zhang ◽  
Lian-Ying Ji ◽  
Zhi-Pei Huang ◽  
Jian-Kang Wu

2013 ◽  
Vol 310 ◽  
pp. 477-480 ◽  
Author(s):  
Gang Yu ◽  
Jin Wu Qian ◽  
Lin Yong Shen ◽  
Ya Nan Zhang

In traditional iatrical method, the patients with hemiplegia were assisted mainly by medical personnel to complete rehabilitation training. To make the medical personnel work easily and improve the effect of rehabilitation training, the rehabilitation robot was adopted. And the control system of a four DOF upper limb rehabilitation robot was designed based on impedance control to assist the patients with hemiplegia to complete rehabilitation training after the kinematic and kinetic analysis was finished. Then finished the analysis, simulation, and experiment of monarticular movement and multiarticulate movement after the analyzing the algorithm to tested the control system. The control system based on impedance control of the upper limb rehabilitation robot can realize the passive training which followed the planning trajectory, and active training which followed patients’ awareness of movement.


Author(s):  
Giuseppe Averta ◽  
Cosimo Della Santina ◽  
Edoardo Battaglia ◽  
Federica Felici ◽  
Matteo Bianchi ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 122-127
Author(s):  
Cristian Copilusi ◽  
Ionut Geonea ◽  
Alexandru Margine ◽  
Adrian Rosca

This research addresses attention to human upper limb experimental analysis during feeding process aiding disabled persons. The research core is focused on the experimental process of obtaining the angular amplitudes and trajectories developed by the human upper arm during feeding process. The research originality consists on the obtained results which can be used in further researches for command and control of robotic assisting devices.


Author(s):  
D. Ascione ◽  
G. Laccetti ◽  
M. Lapegna ◽  
D. Romano

Sign in / Sign up

Export Citation Format

Share Document