Detecting Cardiac Abnormalities with Multi-Lead ECG Signals: A Modular Network Approach

Author(s):  
Ryan Clark ◽  
Mohammadreza Heydarian ◽  
Kashif Siddiqui ◽  
Sajjad Rashidiani ◽  
Md Asif Khan ◽  
...  
2021 ◽  
Author(s):  
Zhuoyang Xu ◽  
Yangming Guo ◽  
Tingting Zhao ◽  
Zhuo Liu ◽  
Xingzhi Sun

2020 ◽  
pp. 42-49
Author(s):  
admin admin ◽  
◽  
◽  
Monika Gupta

Internet of Things (IoT) based healthcare applications have grown exponentially over the past decade. With the increasing number of fatalities due to cardiovascular diseases (CVD), it is the need of the hour to detect any signs of cardiac abnormalities as early as possible. This calls for automation on the detection and classification of said cardiac abnormalities by physicians. The problem here is that, there is not enough data to train Deep Learning models to classify ECG signals accurately because of sensitive nature of data and the rarity of certain cases involved in CVDs. In this paper, we propose a framework which involves Generative Adversarial Networks (GAN) to create synthetic training data for the classes with less data points to improve the performance of Deep Learning models trained with the dataset. With data being input from sensors via cloud and this model to classify the ECG signals, we expect the framework to be functional, accurate and efficient.


Author(s):  
Matteo Bodini ◽  
Massimo W. Rivolta ◽  
Roberto Sassi

Recent studies have suggested that cardiac abnormalities can be detected from the electrocardiogram (ECG) using deep machine learning (DL) models. However, most DL algorithms lack interpretability, since they do not provide any justification for their decisions. In this study, we designed two new frameworks to interpret the classification results of DL algorithms trained for 12-lead ECG classification. The frameworks allow us to highlight not only the ECG samples that contributed most to the classification, but also which between the P-wave, QRS complex and T-wave, hereafter simply called ‘waves’, were the most relevant for the diagnosis. The frameworks were designed to be compatible with any DL model, including the ones already trained. The frameworks were tested on a selected Deep Neural Network, trained on a publicly available dataset, to automatically classify 24 cardiac abnormalities from 12-lead ECG signals. Experimental results showed that the frameworks were able to detect the most relevant ECG waves contributing to the classification. Often the network relied on portions of the ECG which are also considered by cardiologists to detect the same cardiac abnormalities, but this was not always the case. In conclusion, the proposed frameworks may unveil whether the network relies on features which are clinically significant for the detection of cardiac abnormalities from 12-lead ECG signals, thus increasing the trust in the DL models. This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.


Author(s):  
Zhaowei Zhu ◽  
Han Wang ◽  
Tingting Zhao ◽  
Yangming Guo ◽  
Zhuoyang Xu ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Sign in / Sign up

Export Citation Format

Share Document