Novel Soft-Switching Interleaved Boost Converters for Renewable Energy Conversion Systems

Author(s):  
Madhuchandra Popuri ◽  
V.V.Subrahmanya Kumar Bhajana ◽  
Pavel Drabek ◽  
Manoj Kumar Maharana
Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 237 ◽  
Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest in the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this end, data-driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes of working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Therefore, the paper aims at providing some guidelines on the design and the application of different data-driven control strategies to a wind turbine benchmark and a hydroelectric simulator. They rely on self-tuning PID, fuzzy logic, adaptive and model predictive control methodologies. Some of the considered methods, such as fuzzy and adaptive controllers, were successfully verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some details of the implementation of the proposed control strategies to these energy conversion systems. The simulations will highlight that the fuzzy regulators are able to provide good tracking capabilities, which are outperformed by adaptive and model predictive control schemes. The working conditions of the considered processes will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many plants.


Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, data--driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods, such as fuzzy and adaptive self--tuning controllers, were already verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. The working conditions of these systems will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.


2021 ◽  
Vol 6 (1) ◽  
pp. 20-30
Author(s):  
Zhijia Wang ◽  

3-phase cage induction machines, operated in two series-connected and one-isolated (TSCAOI) winding configuration, have been proposed to generate standalone single-phase electricity at variable speeds for renewable energy conversion systems. However, the steady-state behaviour and performance of this particular generator are not yet to be theoretically investigated. This paper therefore presents the first theoretical investigation based on the steady-state equivalent circuit model for standalone TSCAOI configured generators. Moreover, this paper is the first to adopt the winding function approach to derive a dynamic mathematical model for TSCAOI configured generators. This approach not only eliminates the cumbersome mathematical manipulation required in all previous papers related to TSCAOI configured generators but also provides a visual insight into the resulting winding distribution of the machine. In order to investigate the load and excitation characteristics pertinently, the dynamic model is transformed into two different equivalent circuit models by appropriate selected transformation matrix. Using these two models, this paper identified the impacts of system parameters on the load and excitation characteristics, as well as on the level of voltage unbalance. Experimental results of a prototype generator under various operating conditions are presented, together with simulated results, to demonstrate the accuracy of the proposed investigations.


Sign in / Sign up

Export Citation Format

Share Document