scholarly journals Data-Driven Control Techniques for Renewable Energy Conversion Systems: Wind Turbine and Hydroelectric Plants

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 237 ◽  
Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest in the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this end, data-driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes of working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Therefore, the paper aims at providing some guidelines on the design and the application of different data-driven control strategies to a wind turbine benchmark and a hydroelectric simulator. They rely on self-tuning PID, fuzzy logic, adaptive and model predictive control methodologies. Some of the considered methods, such as fuzzy and adaptive controllers, were successfully verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some details of the implementation of the proposed control strategies to these energy conversion systems. The simulations will highlight that the fuzzy regulators are able to provide good tracking capabilities, which are outperformed by adaptive and model predictive control schemes. The working conditions of the considered processes will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many plants.

Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, data--driven control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods, such as fuzzy and adaptive self--tuning controllers, were already verified on wind turbine systems, and similar advantages may thus derive from their appropriate implementation and application to hydroelectric plants. These issues represent the key features of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. The working conditions of these systems will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.


Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self--tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. The scope is to analyse common points in the control objectives and the achievable results from the application of different solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will be also taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.


This article presents a model prescient control (MPC) system for variable speed wind energy transformation framework (VS_WECS) based lasting magnet coordinated generator (PMSG). The prescient control is applied for ideal activity of a PMSG wind turbine (WT). The PMSG is attached to the utility framework through a three-stage consecutive (BTB) converter. The greatest force accessible from the WECS is collected by applying the control calculation to the machine side converter (MSC). The dc-interface voltage guideline is accomplished utilizing the framework side converter (GSC). A model of straightforwardly determined PMSG based variable-speed WECS is created and imitated utilizing MATLAB/SIMULINK climate. The MPC gives great unique execution under wide wind speed variety. The viability of the proposed control approach is approved through broad reenactment results. The THD (total harmonics distortion) of the grid current is maintained under the limit of an IEEE-519 standard.


Sign in / Sign up

Export Citation Format

Share Document