Shape-based Representation and Abstraction of Time Series Data along with a Dynamic Time Shape Wrapping as a Dissimilarity Measure

Author(s):  
Fatma Ezzahra Gmati ◽  
Salem Chakhar ◽  
Wided Lejouad Chaari ◽  
Mark Xu
2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a pharmaceutical early warning model to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose a new early warning score model for detecting cardiac arrest via pharmaceutical classification and by using a sliding window; we apply learning-based algorithms to time-series data for a Pharmaceutical Early Warning Scoring Model (PEWSM). By treating pharmaceutical features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits, and replenishers and regulators of water and electrolytes. The best AUROC of bits is 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, LSTM yields better performance with time-series data. The proposed PEWSM, which offers 4-hour predictions, is better than the National Early Warning Score (NEWS) in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2014 ◽  
Vol 23 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Cangqi Zhou ◽  
Qianchuan Zhao

AbstractMining time series data is of great significance in various areas. To efficiently find representative patterns in these data, this article focuses on the definition of a valid dissimilarity measure and the acceleration of partitioning clustering, a common group of techniques used to discover typical shapes of time series. Dissimilarity measure is a crucial component in clustering. It is required, by some particular applications, to be invariant to specific transformations. The rationale for using the angle between two time series to define a dissimilarity is analyzed. Moreover, our proposed measure satisfies the triangle inequality with specific restrictions. This property can be employed to accelerate clustering. An integrated algorithm is proposed. The experiments show that angle-based dissimilarity captures the essence of time series patterns that are invariant to amplitude scaling. In addition, the accelerated algorithm outperforms the standard one as redundancies are pruned. Our approach has been applied to discover typical patterns of information diffusion in an online social network. Analyses revealed the formation mechanisms of different patterns.


Author(s):  
Birgit Lessmann ◽  
Tim W Nattkemper ◽  
Johannes Huth ◽  
Christian Loyek ◽  
Preminda Kessar ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197499 ◽  
Author(s):  
Yongli Liu ◽  
Jingli Chen ◽  
Shuai Wu ◽  
Zhizhong Liu ◽  
Hao Chao

2018 ◽  
Vol 32 (4) ◽  
pp. 1074-1120 ◽  
Author(s):  
Hoang Anh Dau ◽  
Diego Furtado Silva ◽  
François Petitjean ◽  
Germain Forestier ◽  
Anthony Bagnall ◽  
...  

2021 ◽  
Author(s):  
Lucas Cassiel Jacaruso

Abstract Time series similarity measures are highly relevant in a wide range of emerging applications including training machine learning models, classification, and predictive modeling. Standard similarity measures for time series most often involve point-to-point distance measures including Euclidean distance and Dynamic Time Warping. Such similarity measures fundamentally require the fluctuation of values in the time series being compared to follow a corresponding order or cadence for similarity to be established. Other existing approaches use local statistical tests to detect structural changes in time series. This paper is spurred by the exploration of a broader definition of similarity, namely one that takes into account the sheer numerical resemblance between sets of statistical properties for time series segments irrespectively of value labeling. Further, the presence of common pattern components between time series segments was examined even if they occur in a permuted order, which would not necessarily satisfy the criteria of more conventional point-to-point distance measures. The newly defined similarity measures were tested on time series data representing over 20 years of cooperation intent expressed in global media sentiment. Tests determined whether the newly defined similarity measures would accurately identify stronger resemblance, on average, for pairings of similar time series segments (exhibiting overall decline) than pairings of differing segments (exhibiting overall decline and overall rise). The ability to identify patterns other than the obvious overall rise or decline that can accurately relate samples is regarded as a first step towards assessing the value of the newly explored similarity measures for classification or prediction. Results were compared with those of Dynamic Time Warping on the same data for context. Surprisingly, the test for numerical resemblance between sets of statistical properties established stronger resemblance for pairings of decline years with greater statistical significance than Dynamic Time Warping on the particular data and sample size used.


2020 ◽  
Vol 12 (16) ◽  
pp. 6370
Author(s):  
Zhan Gao ◽  
Sheng Wei ◽  
Lei Wang ◽  
Sijia Fan

Traditional dock-based public bicycle systems continue to dominate cycling in most cities, even though bicycle-sharing services are an increasingly popular means of transportation in many of China’s large cities. A few studies investigated the traditional public bicycle systems in small and mid-sized cities in China. The time series clustering method’s advantages for analyzing sequential data used in many transportation-related studies are restricted to time series data, thereby limiting applications to transportation planning. This study explores the characteristics of a typical third-tier city’s public bicycle system (where there is no bicycle-sharing service) using station classification via the time series cluster algorithm and bicycle use data. A dynamic time warping distance-based k-medoids method classifies public bicycle stations by using one-month bicycle use data. The method is further extended to non-time series data after format conversion. The paper identified three clusters of stations and analyzed the relationships between clusters’ features and the stations’ urban environments. Based on points-of-interest data, the classification results were validated using the enrichment factor and the proportional factor. The method developed in this paper can apply to other transportation analysis and the results also yielded relevant strategies for transportation development and planning.


Sign in / Sign up

Export Citation Format

Share Document