Development of A Pharmaceutical Early Warning Scoring Model for Cardiac Arrest Using Deep Learning: Retrospective Cohort Study (Preprint)

2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a pharmaceutical early warning model to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose a new early warning score model for detecting cardiac arrest via pharmaceutical classification and by using a sliding window; we apply learning-based algorithms to time-series data for a Pharmaceutical Early Warning Scoring Model (PEWSM). By treating pharmaceutical features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits, and replenishers and regulators of water and electrolytes. The best AUROC of bits is 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, LSTM yields better performance with time-series data. The proposed PEWSM, which offers 4-hour predictions, is better than the National Early Warning Score (NEWS) in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.

2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Zhao ◽  
Shubo Liu ◽  
Xingxing Xiong ◽  
Zhaohui Cai

Privacy protection is one of the major obstacles for data sharing. Time-series data have the characteristics of autocorrelation, continuity, and large scale. Current research on time-series data publication mainly ignores the correlation of time-series data and the lack of privacy protection. In this paper, we study the problem of correlated time-series data publication and propose a sliding window-based autocorrelation time-series data publication algorithm, called SW-ATS. Instead of using global sensitivity in the traditional differential privacy mechanisms, we proposed periodic sensitivity to provide a stronger degree of privacy guarantee. SW-ATS introduces a sliding window mechanism, with the correlation between the noise-adding sequence and the original time-series data guaranteed by sequence indistinguishability, to protect the privacy of the latest data. We prove that SW-ATS satisfies ε-differential privacy. Compared with the state-of-the-art algorithm, SW-ATS is superior in reducing the error rate of MAE which is about 25%, improving the utility of data, and providing stronger privacy protection.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Shaker M Eid ◽  
Aiham Albaeni ◽  
Rebeca Rios ◽  
May Baydoun ◽  
Bolanle Akinyele ◽  
...  

Background: The intent of the 5-yearly Resuscitation Guidelines is to improve outcomes. Previous studies have yielded conflicting reports of a beneficial impact of the 2005 guidelines on out-of-hospital cardiac arrest (OHCA) survival. Using a national database, we examined survival before and after the introduction of both the 2005 and 2010 guidelines. Methods: We used the 2000 through 2012 National Inpatient Sample database to select patients ≥18 years admitted to hospitals in the United States with non-traumatic OHCA (ICD-9 CM codes 427.5 & 427.41). A quasi-experimental (interrupted time series) design was used to compare monthly survival trends. Outcomes for OHCA were compared pre- and post- 2005 and 2010 resuscitation guidelines release as follows: 01/2000-09/2005 vs. 10/2005-9/2010 and 10/2005-9/2010 vs. 10/2010-12/2012. Segmented regression analyses of interrupted time series data were performed to examine changes in survival to hospital discharge. Results: For the pre- and post- guidelines periods, 81600, 69139 and 36556 patients respectively survived to hospital admission following OHCA. Subsequent to the release of the 2005 guidelines, there was a statistically significant worsening in survival trends (β= -0.089, 95% CI -0.163 – -0.016, p =0.018) until the release of the 2010 guidelines when a sharp increase in survival was noted which persisted for the period of study (β= 0.054, 95% CI -0.143 – 0.251, p =0.588) but did not achieve statistical significance (Figure). Conclusion: National clinical guidelines developed to impact outcomes must include mechanisms to assess whether benefit actually occurs. The worsening in OHCA survival following the 2005 guidelines is thought provoking but the improvement following the release of the 2010 guidelines is reassuring and worthy of perpetuation.


Author(s):  
Birgit Lessmann ◽  
Tim W Nattkemper ◽  
Johannes Huth ◽  
Christian Loyek ◽  
Preminda Kessar ◽  
...  

2018 ◽  
Vol 7 (3.3) ◽  
pp. 218 ◽  
Author(s):  
D Senthil ◽  
G Suseendran

Time series analysis is an important and complex problem in machine learning and statistics. In the existing system, Support Vector Machine (SVM) and Association Rule Mining (ARM) is introduced to implement the time series data. However it has issues with lower accuracy and higher time complexity. Also it has issue with optimal rules discovery and segmentation on time series data. To avoid the above mentioned issues, in the proposed research Sliding Window Technique based Improved ARM with Enhanced SVM (SWT-IARM with ESVM) is proposed. In the proposed system, the preprocessing is performed using Modified K-Means Clustering (MKMC). The indexing process is done by using R-tree which is used to provide faster results. Segmentation is performed by using SWT and it reduces the cost complexity by optimal segments. Then IARM is applied on efficient rule discovery process by generating the most frequent rules. By using ESVM classification approach, the rules are classified more accurately.  


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197499 ◽  
Author(s):  
Yongli Liu ◽  
Jingli Chen ◽  
Shuai Wu ◽  
Zhizhong Liu ◽  
Hao Chao

Sign in / Sign up

Export Citation Format

Share Document