Power Plant Pump Process Model Error Minimization Technique for Improving Simulator Fidelity

Author(s):  
SooYong Yun ◽  
Kwan-Woong Gwak ◽  
Seung-Hyun Byun ◽  
Deockho Kim ◽  
Jaeyong Cho ◽  
...  
2019 ◽  
Vol 17 (3) ◽  
pp. 357-385
Author(s):  
Wim van Ackooij ◽  
Debora Daniela Escobar ◽  
Martin Glanzer ◽  
Georg Ch. Pflug

AbstractThe valuation of a real option is preferably done with the inclusion of uncertainties in the model, since the value depends on future costs and revenues, which are not perfectly known today. The usual value of the option is defined as the maximal expected (discounted) profit one may achieve under optimal management of the operation. However, also this approach has its limitations, since quite often the models for costs and revenues are subject to model error. Under a prudent valuation, the possible model error should be incorporated into the calculation. In this paper, we consider the valuation of a power plant under ambiguity of probability models for costs and revenues. The valuation is done by stochastic dynamic programming and on top of it, we use a dynamic ambiguity model for obtaining the prudent minimax valuation. For the valuation of the power plant under model ambiguity we introduce a distance based on the Wasserstein distance. Another highlight of this paper is the multiscale approach, since decision stages are defined on a weekly basis, while the random costs and revenues appear on a much finer scale. The idea of bridging stochastic processes is used to link the weekly decision scale with the finer simulation scale. The applicability of the introduced concepts is broad and not limited to the motivating valuation problem.


Author(s):  
Michael Vollmer ◽  
Camille Pedretti ◽  
Alexander Ni ◽  
Manfred Wirsum

This paper presents the fundamentals of an evolutionary, thermo-economic plant design methodology, which enables an improved and customer-focused optimization of the bottoming cycle of a large Combined Cycle Power Plant. The new methodology focuses on the conceptual design of the CCPP applicable to the product development and the pre-acquisition phase. After the definition of the overall plant configuration such as the number of gas turbines used, the type of main cooling system and the related fix investment cost, the CCPP is optimized towards any criteria available in the process model (e.g. lowest COE, maximum NPV/IRR, highest net efficiency). In view of the fact that the optimization is performed on a global plant level with a simultaneous hot- and cold- end optimization, the results clearly show the dependency of the HRSG steam parameters and the related steam turbine configuration on the definition of the cold end (Air Cooled Condenser instead of Direct Cooling). Furthermore, competing methods for feedwater preheating (HRSG recirculation, condensate preheating or pegging steam), different HRSG heat exchanger arrangements as well as applicable portfolio components are automatically evaluated and finally selected. The developed process model is based on a fixed superstructure and copes with the full complexity of today’s bottoming cycle configurations as well with any constraints and design rules existing in practice. It includes a variety of component modules that are prescribed with their performance characteristics, design limitations and individual cost. More than 100 parameters are used to directly calculate the overall plant performance and related investment cost. Further definitions on payment schedule, construction time, operation regime and consumable cost results in a full economic life cycle calculation of the CCPP. For the overall optimization the process model is coupled to an evolutionary optimizer, whereas around 60 design parameters are used within predefined bounds. Within a single optimization run more than 100’000 bottoming cycle configurations are calculated in order to find the targeted optimum and thanks to today’s massive parallel computing resources, the solution can be found over night. Due to the direct formulation of the process model, the best cycle configuration is a result provided by the optimizer and can be based on a single-, dual or triple pressure system using non-reheat, reheat or double reheat configuration. This methodology enables to analyze also existing limitations and characteristics of the key components in the process model and assists to initiate new developments in order to constantly increase the value for power plant customers.


Author(s):  
Joo-Hee Woo ◽  
In-Kyu Choi ◽  
Doo-Yong Park ◽  
Jong-An Kim

Author(s):  
W. C. Yang ◽  
R. A. Newby ◽  
R. L. Bannister

Air-blown coal gasification for combined-cycle power generation is a technology soon to be demonstrated. A process evaluation of air-blown IGCC performed to estimate the plant heat rate, electrical output and potential emissions are described in this paper. A process model of an air-blown IGCC power system based on the Westinghouse 501F combustion turbine was developed to conduct the performance evaluation. Parametric studies were performed to develop an understanding of the power plant sensitivity to the major operating parameters and process options. Advanced hot fuel gas cleaning and conventional cold fuel gas cleaning options were both considered.


Sign in / Sign up

Export Citation Format

Share Document