scholarly journals Dynamic modelling and simulation of a combined-cycle power plant integration with thermal energy storage

Author(s):  
Decai Li ◽  
Yukun Hu ◽  
Wei He ◽  
Jihong Wang
Author(s):  
Jose Garcia ◽  
Vincent Smet ◽  
Rafael Guedez ◽  
Alessandro Sorce

Abstract The present study presents a techno-economic analysis of a novel power plant layout developed to increase the dispatch flexibility of a Combined Cycle Gas Turbine (CCGT) coupled to a District Heating Network (DHN). The layout includes the incorporation of high temperature heat pumps (HP) and thermal energy storage (TES). A model for optimizing the short-term dispatch strategy of such system has been developed to maximize its operational profit. The constraints and boundary conditions considered in the study include hourly demand and price of electricity and heat, ambient conditions and CO2 emission allowances. To assess the techno-economic benefit of the new layout, a year of operation was simulated for a power plant in Turin, Italy. Furthermore, different layout configurations and critical size-related parameters were considered. Finally, a sensitivity analysis was made to assess the performance under different market scenarios. The results show that it is indeed beneficial, under the assumed market conditions, to integrate a HP in a CCGT plant coupled to a DHN, and that it remains profitable to do so under a variety of market scenarios. The best results for the assumed market conditions were found when integrating a 15 MWth capacity HP in the 400 MWel CCGT-CHP. For this case study, the investment in the HP would yield a net present value (NPV) of 1.22 M€ and an internal rate of return (IRR) of 3.04% for a lifetime of 20 years. An increase was shown also in operational flexibility with 0.14% of the electricity production shifted while meeting the same heating demand. Additionally, it was found that the TES makes the system even more flexible, but does not make up for the extra investment.


Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 106-121
Author(s):  
Miguel Ángel Reyes-Belmonte ◽  
Alejandra Ambrona-Bermúdez ◽  
Daniel Calvo-Blázquez

In this work, the flexible operation of an Integrated Solar Combined Cycle (ISCC) power plant has been optimized considering two different energy storage approaches. The objective of this proposal is to meet variable users’ grid demand for an extended period at the lowest cost of electricity. Medium temperature thermal energy storage (TES) and hydrogen generation configurations have been analyzed from a techno-economic point of view. Results found from annual solar plant performance indicate that molten salts storage solution is preferable based on the lower levelized cost of electricity (0.122 USD/kWh compared to 0.158 USD/kWh from the hydrogen generation case) due to the lower conversion efficiencies of hydrogen plant components. However, the hydrogen plant configuration exceeded, in terms of plant availability and grid demand coverage, as fewer design constraints resulted in a total demand coverage of 2155 h per year. It was also found that grid demand curves from industrial countries limit the deployment of medium-temperature TES systems coupled to ISCC power plants, since their typical demand curves are characterized by lower power demand around solar noon when solar radiation is higher. In such scenarios, the Brayton turbine design is constrained by noon grid demand, which limits the solar field and receiver thermal power design.


2014 ◽  
Vol 47 (3) ◽  
pp. 419-425 ◽  
Author(s):  
Michael Jost ◽  
Wolfgang Grote ◽  
Florian Möllenbruck ◽  
Martin Mönnigmann

Sign in / Sign up

Export Citation Format

Share Document