A Simple and Tunable Reflective Polarization Converter Based on Vanadium Oxide Built-in Metamaterial Structure

Author(s):  
Fuyuan Yu ◽  
Cheng Wang ◽  
Xiang Liu ◽  
Jiabing Zhu ◽  
Xiaobo Shen
Plasmonics ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 287-291 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Zhongyin Xiao ◽  
Xinyan Ling

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Tian ◽  
Zhiwei Chen ◽  
Fang-Fang Ren ◽  
Qingguo Du ◽  
Zhengying Li

Designing and fabricating high-performance polarization converters that exhibit asymmetric transmission (AT), for light with different circularly/linearly polarized states with opposite propagating directions, are in high demand. The AT phenomenon leads to potential applications as isolators and circulators in information and communication systems. We propose a chiral metamaterial structure with high AT efficiency for two types of linearly orthogonal polarized red-near-IR light in two opposite incident directions. Theoretical results showed that the proposed chiral metamaterial structure achieves cross-polarization conversion where the polarization conversion ratio (PCR) is over 90%, in a broadband wavelength range from 715 to 810 nm, for both forward-propagating linearly polarized light and backward-propagating orthogonal linearly polarized light. The physical mechanisms of the polarization converter with the AT have been investigated. It was confirmed that the Fabry–Perot-like resonance and coupling between electric and magnetic dipoles lead to highly efficient asymmetric polarization conversion for two orthogonal linearly polarized light. Additionally, the conversion efficiency and bandwidth of the polarization converter are successfully optimized by adjusting the related structure parameters.


Plasmonics ◽  
2022 ◽  
Author(s):  
Fu-yuan Yu ◽  
Xiong-jun Shang ◽  
Wei Fang ◽  
Qing-qing Zhang ◽  
Yan Wu ◽  
...  

2012 ◽  
Vol 2 (8) ◽  
pp. 130-133
Author(s):  
Amandeep Singh Amandeep Singh ◽  
◽  
Sankul Agarwal ◽  
Vaibhav Sharma ◽  
Shivam Pandita

2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


2020 ◽  
Author(s):  
Yaxian Guo ◽  
◽  
Jianchun Xu ◽  
Chuwen Lan ◽  
Ke Bi ◽  
...  

1996 ◽  
Vol 61 (8) ◽  
pp. 1131-1140 ◽  
Author(s):  
Abd El-Aziz Ahmed Said

Vanadium oxide catalysts doped or mixed with 1-50 mole % Fe3+ ions were prepared. The structure of the original samples and those calcined from 200 up to 500 °C were characterized by TG, DTA, IR and X-ray diffraction. The SBET values and texture of the solid catalysts were investigated. The catalytic dehydration-dehydrogenation of isopropanol was carried out at 200 °C using a flow system. The results obtained showed an observable decrease in the activity of V2O5 on the addition of Fe3+ ions. Moreover, Fe2V4O13 is the more active and selective catalyst than FeVO4 spinels. The results were correlated with the active sites created on the catalyst surface.


Sign in / Sign up

Export Citation Format

Share Document