Exact Analysis for Error Probability of Max-Log-MAP Decoding in Sequence Dependent Channels

Author(s):  
Tadashi Tomizuka ◽  
Riku Iwanaga ◽  
Ikuo Oka ◽  
Shingo Ata
2006 ◽  
Vol 10 (3) ◽  
pp. 186-188 ◽  
Author(s):  
Hao Wang ◽  
Hongwen Yang ◽  
Dacheng Yang

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 814
Author(s):  
Jun Li ◽  
Xiumin Wang ◽  
Jinlong He ◽  
Chen Su ◽  
Liang Shan

Turbo codes have been widely used in wireless communication systems due to their good error correction performance. Under time division long term evolution (TD-LTE) of the 3rd generation partnership project (3GPP) wireless communication standard, a Log maximum a posteriori (Log-MAP) decoding algorithm with high complexity is usually approximated as a lookup-table Log-MAP (LUT-Log-MAP) algorithm and Max-Log-MAP algorithm, but these two algorithms have high complexity and high bit error rate, respectively. In this paper, we propose a normalized Log-MAP (Nor-Log-MAP) decoding algorithm in which the function max* is approximated by using a fixed normalized factor multiplied by the max function. Combining a Nor-Log-MAP algorithm with a LUT-Log-MAP algorithm creates a new kind of LUT-Nor-Log-MAP algorithm. Compared with the LUT-Log-MAP algorithm, the decoding performance of the LUT-Nor-Log-MAP algorithm is close to that of the LUT-Log-MAP algorithm. Based on the decoding method of the Nor-Log-MAP algorithm, we also put forward a normalization functional unit (NFU) for a soft-input soft-output (SISO) decoder computing unit. The simulation results show that the LUT-Nor-Log-MAP algorithm can save about 2.1% of logic resources compared with the LUT-Log-MAP algorithm. Compared with the Max-Log-MAP algorithm, the LUT-Nor-Log-MAP algorithm shows a gain of 0.25~0.5 dB in decoding performance. Using the Cyclone IV platform, the designed Turbo decoder can achieve a throughput of 36 Mbit/s under a maximum clock frequency of 44 MHz.


Sign in / Sign up

Export Citation Format

Share Document