map algorithm
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 44)

H-INDEX

19
(FIVE YEARS 3)

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1203
Author(s):  
Yongheng Dong ◽  
Shujuan Li ◽  
Qian Zhang ◽  
Pengyang Li ◽  
Zhen Jia ◽  
...  

The trochoidal milling mode is widely used in high-speed machining, and due to good adaptability and flexible posture adjustment, ball-end milling cutters are conducive to complex surface machining with this mode. However, the processes of material removal and formation of machined micro surfaces are very difficult to describe as the profile of cutter teeth is complex and the trajectory direction changes continuously during the trochoidal milling process. A modeling method for the generation of micro surface topography of ball-end milling in the trochoidal milling mode is put forward. In this method, the locus equation of each cutter tooth is established based on the principle of homogeneous coordinate transformation, after which a Z-MAP algorithm is designed to simulate the micro surface topography. The Z-MAP algorithm can quickly obtain the part grid nodes potentially swept by the cutter tooth within a unit time step through the establishment of servo rectangular encirclement and instantaneous sweeping quadrilateral of the element of cutter teeth; the part grid nodes actually swept are further determined through an angle summation method, and the height coordinate is calculated with the method of linear interpolation according to Taylor’s formula of multivariate functions. Experiments showed that the micro surface topography resulting from ball-end milling in the trochoidal milling mode had high consistency with the simulation, which indicates that the proposed method can predict micro surface topography in practical manufacturing. In addition, a comparison of micro surface topography between trochoidal milling and ordinary straight-linear milling was conducted, and the results showed that the former was overall superior to the latter in resulting characteristics. Based on this conclusion, the influences of cutting parameters of ball-end trochoidal milling on surface characteristics, particularly amplitude and function, were analyzed according to the simulated micro surface topography data.


Author(s):  
Mostafa Rizk ◽  
Amer Baghdadi ◽  
Michel Jézéquel

Emergent wireless communication standards, which are employed in different transmission environments, support various modulation schemes. High-order constellations are targeted to achieve high bandwidth efficiency. However, the complexity of the symbol-by-symbol Maximum A Posteriori (MAP) algorithm increases dramatically for these high-order modulation schemes. In order to reduce the hardware complexity, the suboptimal Max-Log-MAP, which is the direct transformation of the MAP algorithm into logarithmic domain, is alternatively implemented. In the literature, a great deal of research effort has been invested into Max-Log-MAP demapping. Several simplifications are presented to meet with specific constellations. In addition, the hardware implementations dedicated for Max-Log-MAP demapping vary greatly in terms of design choices, supported flexibility and performance criteria, making them a challenge to compare. This paper explores the published Max-Log-MAP algorithm simplifications and existing hardware demapper designs and presents an extensive review of the current literature. In-depth comparisons are drawn amongst the designs and different key performance characteristics are described, namely, achieved throughput, hardware resource requirements and flexibility. This survey should facilitate fair comparisons of future designs, as well as opportunities for improving the design of Max-Log-MAP demappers.


2021 ◽  
Vol 236 ◽  
pp. 109455
Author(s):  
Xinxing You ◽  
Taisei Kumazawa ◽  
Sho Ito ◽  
Ren Hattori ◽  
Hongyuan Yu ◽  
...  

Author(s):  
Arif Fajar Solikin ◽  
Kusrini Kusrini ◽  
Ferry Wahyu Wibowo

Intercomparison was conducted to determine the ability and the performance of the laboratory. Intercomparison results are usually expressed in the range of En ratio values (En ?|1|) which express the equivalence of one laboratory with other laboratories. If the laboratory is declared unequal, then it needs to identify the source of the problem by itself. To make it easier, it can be done by Clustering which is one of the data mining techniques. Clustering is done by applying a self organizing map algorithm on the KNIME (Konstanz Information Miner) analytic tools. Several experiments were carried out with different layer size and data normalization status from one experiment to another experiment. The results were analyzed through pseudo F statistical test and icdrate test. The largest pseudo F statistic value was obtained from the 8th experiment (setting the layer size 2x2 without data normalization) with a pseudo F statistic value of 167.53 for 1kg artifacts and a Pseudo F statistic value of 104.86 for 200 g artifacts where the optimum number of clusters are 4. The smallest icdrate value was obtained from the 5th experiment (setting the 2x3 layer size without data normalization) with an icdrate value of 0.0713 for 1kg artifacts and icdrate value of 0.2889 for 200g artifacts with the best number of clusters being 6. From 12 laboratories can be grouped into 6 groups where each group has the same identification. There are groups 1, 3 and 6 have 1 member, while groups 2, 4 and 5 have 3 members.


2021 ◽  
Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Irfan Khan ◽  
Nicola Amati ◽  
Andrea Tonoli

Author(s):  
Thasshwin Mathanlal ◽  
Anshuman Bhardwaj ◽  
Abhilash Vakkada Ramachandran ◽  
María-Paz Zorzano ◽  
Javier Martín-Torres ◽  
...  

Abstract Geomorphological studies of the hidden and protected subsurface environments are crucial to obtain a greater insight into the evolution of planetary landforms, hydrology, climate, geology and mineralogy. From an astrobiological point of view subsurface environments are of interest for their potential habitability as they are local environments that are partially or fully shielded from the high levels of space and solar radiation. Furthermore, in the case of Mars, there is an increasing interest in searching for the presence of past or extant life in its subsurface. These applications make it mandatory to investigate equipment and instrumentation that allow for the study of subsurface geomorphology, as well as organic chemical biomarkers, such as biomolecules, carbon, nitrogen and sulphur isotopes, and other biologically significant minerals and gases. Mines on Earth can be used as analogues to investigate the geomorphology of Martian subsurface environments and perform astrobiology studies. With that goal, we have developed a low-cost, robust, remotely operable subsurface rover called KORE (KOmpact Rover for Exploration). This work illustrates the studies of a terrestrial analogue for the exploration of Mars using KORE during the Mine Analogue Research 6 (MINAR 6) campaign with the low-cost 3D mapping technology InXSpace 3D (In situ 3D mapping tool eXploration of space 3D). InXSpace 3D utilizes an RGB-D camera that captures depth information in addition to the RGB data of an image, operating based on the structured light principle capable of providing depth information in mm scale resolution at sub 3 m mapping range. InXSpace 3D is used to capture point clouds of natural and artificial features, thereby obtaining information about geologically relevant structures and also to incorporate them in earth mining safety. We tested two of the dense simultaneous localization and mapping (SLAM) algorithms: Kintinuous and Real-Time Appearance-Based Mapping (RTAB-Map) to check the performance of InXSpace 3D in a dark mine environment. Also, the air accumulation of volatiles such as methane and formaldehyde due to thermogenic and mining process was measured with the environmental station payload on the rover platform, which caters to both astrobiological significance and mine safety. The main conclusions of this work are: (1) a comparison made between the RTAB-Map algorithm and Kintinuous algorithm showed the superiority of Kintinuous algorithm in providing better 3D reconstruction; although RTAB-Map algorithm captured more points than the Kintinuous algorithm in the dark mine environment; (2) a comparison of point cloud images captured with and without lighting conditions had a negligible effect on the surface density of the point clouds; (3) close-range imaging of the polygonal features occurring on the halite walls using InXSpace 3D provided mm-scale resolution to enable further characterization; (4) heuristic algorithms to quickly post-process the 3D point cloud data provided encouraging results for preliminary analyses; (5) we successfully demonstrated the application of KORE to mine safety; and (6) the multi-sensors platform on KORE successfully monitored the accumulated volatiles in the mine atmosphere during its operation. The findings obtained during this KORE campaign could be incorporated in designing and planning future subsurface rover explorations to potential planetary bodies such as Mars with synergistic applications to subsurface environments in mines on Earth.


Author(s):  
Zahraa Salah Dhaief ◽  
Dena Nadir George ◽  
Raniah Ali Mustafa
Keyword(s):  

2021 ◽  
Author(s):  
Julián Grigera ◽  
Juan Gardey ◽  
Alejandra Garrido ◽  
Gustavo Rossi

Sign in / Sign up

Export Citation Format

Share Document