Building Soft Sensors using Artificial Intelligence: Use Case on Daily Solar Radiation

Author(s):  
Ivana Nizetic Kosovic ◽  
Ana Bozic ◽  
Toni Mastelic ◽  
Damir Ivankovic
Author(s):  
L. Ometto ◽  
S. Challapalli ◽  
M. Polo ◽  
G. Cestari ◽  
A. Villagrossi ◽  
...  

AI and Ethics ◽  
2021 ◽  
Author(s):  
Steven Umbrello ◽  
Ibo van de Poel

AbstractValue sensitive design (VSD) is an established method for integrating values into technical design. It has been applied to different technologies and, more recently, to artificial intelligence (AI). We argue that AI poses a number of challenges specific to VSD that require a somewhat modified VSD approach. Machine learning (ML), in particular, poses two challenges. First, humans may not understand how an AI system learns certain things. This requires paying attention to values such as transparency, explicability, and accountability. Second, ML may lead to AI systems adapting in ways that ‘disembody’ the values embedded in them. To address this, we propose a threefold modified VSD approach: (1) integrating a known set of VSD principles (AI4SG) as design norms from which more specific design requirements can be derived; (2) distinguishing between values that are promoted and respected by the design to ensure outcomes that not only do no harm but also contribute to good, and (3) extending the VSD process to encompass the whole life cycle of an AI technology to monitor unintended value consequences and redesign as needed. We illustrate our VSD for AI approach with an example use case of a SARS-CoV-2 contact tracing app.


Author(s):  
Radian Belu

Artificial intelligence (AI) techniques play an important role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms employed to model, control, or to predict performances of the energy systems are complicated involving differential equations, large computer power, and time requirements. Instead of complex rules and mathematical routines, AI techniques are able to learn the key information patterns within a multidimensional information domain. Design, control, and operation of solar energy systems require long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer of a number of shortcomings (e.g. poor quality of data, insufficient long series, etc.). To overcome these problems AI techniques appear to be one of the strongest candidates. The chapter provides an overview of commonly used AI methodologies in solar energy, with a special emphasis on neural networks, fuzzy logic, and genetic algorithms. Selected AI applications to solar energy are outlined in this chapter. In particular, methods using the AI approach for the following applications are discussed: prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 235
Author(s):  
Paulo Garcia ◽  
Francine Darroch ◽  
Leah West ◽  
Lauren BrooksCleator

The use of technological solutions to address the production of goods and offering of services is ubiquitous. Health and social issues, however, have only slowly been permeated by technological solutions. Whilst several advances have been made in health in recent years, the adoption of technology to combat social problems has lagged behind. In this paper, we explore Big Data-driven Artificial Intelligence (AI) applied to social systems; i.e., social computing, the concept of artificial intelligence as an enabler of novel social solutions. Through a critical analysis of the literature, we elaborate on the social and human interaction aspects of technology that must be in place to achieve such enabling and address the limitations of the current state of the art in this regard. We review cultural, political, and other societal impacts of social computing, impact on vulnerable groups, and ethically-aligned design of social computing systems. We show that this is not merely an engineering problem, but rather the intersection of engineering with health sciences, social sciences, psychology, policy, and law. We then illustrate the concept of ethically-designed social computing with a use case of our ongoing research, where social computing is used to support safety and security in home-sharing settings, in an attempt to simultaneously combat youth homelessness and address loneliness in seniors, identifying the risks and potential rewards of such a social computing application.


2019 ◽  
Vol 28 (4) ◽  
pp. 1217-1238 ◽  
Author(s):  
Vahid Nourani ◽  
Gozen Elkiran ◽  
Jazuli Abdullahi ◽  
Ala Tahsin

Sign in / Sign up

Export Citation Format

Share Document