Slit Loaded E-Shaped Single Layer Broadband Rectangular Patch Antennas with High Gain and Low Cross Polarization

Author(s):  
T. sarkar ◽  
S. Chakraborty ◽  
A. Ghosh ◽  
L. Lolit Kumar Singh ◽  
S. Chattopadhyay
Author(s):  
L.L.K. Singh ◽  
B. Gupta ◽  
P.P. Sarkar ◽  
K. Yoshitomi ◽  
K. Yasumoto

Author(s):  
Zizung Yoon ◽  
Mayank Mayank ◽  
Enrico Stoll

Patch antennas are compact, less complex, planar structures and therefore, widely used in small satellite missions for telecommand, data link, and intersatellite link, particularly in S- band and X- band. Improved performance of these patch antennas in terms of gain and compactness will di-rectly affect the communication efficiency of small satellite missions. Especially the coming IoT (Internet of Things) constellations require high gain and efficient antenna arrays. An optimization of single patch antenna elements is an important cornerstone for the missions. Therefore, the ef-fects of various antenna enhancement techniques, such as slotted ground plane, resistor and ca-pacitor integration, parasitic patch elements, are analyzed. These techniques were applied on a rectangular patch antenna with parameter variation to identify the optimal performances with respect to bandwidth, operating frequency, gain, polarization, and power flow. Finally, the techniques were combined to obtain an optimized antenna in terms of gain and compactness. The results were compared to a slotted reference antenna. For the scenario of a 2.4 GHz patch antenna, a gain optimization of 27 % (from 7.09 to 8.14 dBi) or size reduction of 52 % (from 96.04 to 46.2 cm²) could be achieved. Overall, our study revealed an effective way to increase the patch antenna performance, which can directly contribute to more efficient communication links and design of antenna arrays.


2020 ◽  
Vol 12 (8) ◽  
pp. 769-781
Author(s):  
Kalyan Sundar Kola ◽  
Anirban Chatterjee ◽  
Deven Patanvariya

AbstractThis paper presents a compact octagonal array of microstrip patch antennas for direct broadcast satellite (DBS) (12.2–12.7 GHz) services. The proposed single element of this array is a new fractal antenna, having considerably high gain and can heavily suppress cross polarization along the main beam direction. The single element is derived from a 2D spiral geometry. The corporate feed network of the array is designed in such a manner to make the structure very compact. The fabricated single element resonates at 12.51 GHz and gives a gain and bandwidth of 9.32 dBi and 280 MHz, respectively. The array resonates at 12.46 GHz and gives gain of 17.67 dBi and a bandwidth of 506 MHz, which ensures a 100% coverage of the entire DBS service band. The measured cross polarization of single element and array along the direction of main beam are −45.50 and −43.35 dB, respectively. Both the single element as well as the array maintains a reasonably good radiation efficiency of 86.70 and 82.20%, respectively.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1049
Author(s):  
Fan Zhao ◽  
Luhong Mao ◽  
Weilian Guo ◽  
Sheng Xie ◽  
Clarence Augustine T. H. Tee

This study proposes an on-chip terahertz (THz) detector designed with on-chip inset-feed rectangular patch antenna and catadioptric lens. The detector incorporates a dual antenna and dual NMOSFET structure. Radiation efficiency of the antenna reached 89.4% with 6.89 dB gain by optimizing the antenna inset-feed and micro-strip line sizes. Simulated impedance was 85.55 − j19.81 Ω, and the impedance of the antenna with the ZEONEX horn-like catadioptric lens was 117.03 − j20.28 Ω. Maximum analyzed gain of two on-chip antennas with catadioptric lens was 17.14 dB resonating at 267 GHz. Maximum experimental gain of two on-chip patch antennas was 4.5 dB at 260 GHz, increasing to 10.67 dB at 250 GHz with the catadioptric lens. The proposed on-chip rectangular inset-feed patch antenna has a simple structure, compatible with CMOS processing and easily implemented. The horn-like catadioptric lens was integrated into the front end of the detector chip and hence is easily molded and manufactured, and it effectively reduced terahertz power absorption by the chip substrate. This greatly improved the detector responsivity and provided very high gain. Corresponding detector voltage responsivity with and without the lens was 95.67 kV/W with NEP = 12.8 pW/Hz0.5 at 250 GHz, and 19.2 kV/W with NEP = 67.2 pW/Hz0.5 at 260 GHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document