Design of a compact high gain printed octagonal array of spiral-based fractal antennas for DBS application

2020 ◽  
Vol 12 (8) ◽  
pp. 769-781
Author(s):  
Kalyan Sundar Kola ◽  
Anirban Chatterjee ◽  
Deven Patanvariya

AbstractThis paper presents a compact octagonal array of microstrip patch antennas for direct broadcast satellite (DBS) (12.2–12.7 GHz) services. The proposed single element of this array is a new fractal antenna, having considerably high gain and can heavily suppress cross polarization along the main beam direction. The single element is derived from a 2D spiral geometry. The corporate feed network of the array is designed in such a manner to make the structure very compact. The fabricated single element resonates at 12.51 GHz and gives a gain and bandwidth of 9.32 dBi and 280 MHz, respectively. The array resonates at 12.46 GHz and gives gain of 17.67 dBi and a bandwidth of 506 MHz, which ensures a 100% coverage of the entire DBS service band. The measured cross polarization of single element and array along the direction of main beam are −45.50 and −43.35 dB, respectively. Both the single element as well as the array maintains a reasonably good radiation efficiency of 86.70 and 82.20%, respectively.

2015 ◽  
Vol 13 ◽  
pp. 251-268 ◽  
Author(s):  
D. Vollbracht

Abstract. The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation patterns.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4404 ◽  
Author(s):  
Son Trinh-Van ◽  
Oh Heon Kwon ◽  
Euntae Jung ◽  
Jinwoo Park ◽  
Byunggil Yu ◽  
...  

This paper presents a low-profile log-periodic meandered dipole array (LPMDA) antenna with wideband and high gain characteristics. The antenna consists of 14 dipole elements. For compactness, a meander line structure is applied to each dipole element to reduce its physical length. As a result, a compact and wideband LPMDA antenna is realized, exhibiting a wide impedance bandwidth of 1.04–5.22 GHz (ratio bandwidth of 5.02:1) for | S 11| < −10 dB. To enhance the antenna gain performance while maintaining the wideband behavior, the LPMDA antenna is integrated with a new design of an artificial magnetic conductor (AMC) structure. The designed AMC is realized by combining three AMC structures of different sizes to form a cascaded multi-section AMC structure, of which its overall operating bandwidth can continuously cover the entire impedance bandwidth of the LPMDA antenna. The proposed AMC-backed LPMDA antenna is experimentally verified and its measured −10 dB reflection bandwidth is found to be in the range of 0.84–5.15 GHz (6.13:1). At the main beam direction within the operating frequency bandwidth, the gain of the proposed AMC-backed LPMDA antenna ranges from 7.15–11.43 dBi, which is approximately 4 dBi higher than that of an LPMDA antenna without an AMC. Moreover, the proposed antenna has a low profile of only 0.138 λ L. ( λ L is the free-space wavelength at the lowest operating frequency).


2020 ◽  
Vol 12 (5) ◽  
pp. 419-430
Author(s):  
Muhammad Anas ◽  
Hifsa Shahid ◽  
Abdul Rauf ◽  
Abdullah Shahid

AbstractA novel 1 × 4 phased array elliptical inverted T-shaped slotted sectored patch antenna with defected ground structure (DGS), resonate at proposed ultra-wide tetra band at 28, 43, 51, and 64 GHz with high gain and beam-steering capabilities is presented. An inverted T-shaped slotted stub is used with the sectored patch to achieve ultra-wideband properties. In order to resonate the antenna at four different bands, DGS of round bracket slot is etched on the ground. The 1 × 4 phased arrays are used at the top edge and bottom edge of mobile PCB with high gain. The simulation results show that the antenna has four ultra-wide bands: 25.8–29.7, 40.6–44.6, 49.2–53.1, and 62.2–74 GHz with a maximum gain of 16.5 dBi at 51 GHz. The phased array antenna is capable to steer its main beam within ±30° at the 26, 28, and 43 GHz, using appropriate phase shifts of each antenna element. The proposed millimeter wave antenna is particularly suitable for cellular infrastructures and can be a candidate for emerging 5G mobile applications. The availability of an additional 11.8 GHz (62.2–74 GHz) of contiguous unlicensed spectrum will allow the launching of new exciting wireless services.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Grzegorz Adamiuk ◽  
Mario Pauli ◽  
Thomas Zwick

A concept of an array configuration for an ultrawideband suppression of the cross-polarization is presented. The method is explained in detail, and a mathematical description of the principle is given. It is shown that the presented configuration is convenient for the development of very broad band, dual-orthogonal, linearly polarized antennas with high polarization purity. The investigated configuration shows a high decoupling of the orthogonal ports and is capable for antennas with a main beam direction perpendicular to the substrate surface, that is, for a planar design. The phase center of the antenna configuration remains fixed at one single point over the complete desired frequency range, allowing a minimum dispersion of the radiated signal. The influence of nonidealities in the feeding network on the polarization purity is investigated. The presented method introduces a superior possibility of an extension of typical UWB technique to fully polarized systems, which improves significantly performance in, for example, UWB-MIMO or UWB-Radar.


2016 ◽  
Vol 9 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Jaishanker Prasad Keshari ◽  
Binod Kumar Kanaujia ◽  
Mukesh Kumar Khandelwal ◽  
Pritam Singh Bakariya ◽  
Ram Mohan Mehra

In this paper, triple-band stacked microstrip patch antennas (MPAs) are presented with wide impedance bandwidth and suppressed cross-polarization level. Triangular and circular shaped slots are embedded in the patch of antenna. Slot-loaded microstrip patches are fed with meandered microstrip line supported by a semi-ground plane structure. Triangular shaped slot-loaded MPA shows triple resonance at frequencies 2.2, 4.45, and 5.3 GHz having bandwidth of 45.9, 19.23, and 15.67%, respectively. Circular shaped slot-loaded MPA also shows triple resonance at frequencies 2.2, 4.42, and 5.38 GHz having bandwidth of 50.24, 33.21, and 13.43%, respectively. Using circular slot in place of triangular; bandwidth of the first and the second band is improved by 4.34 and 13.98%, respectively. Both the proposed antennas show an omnidirectional radiation pattern at all three resonance frequencies in the xz-plane with almost 0 dBi gain. Both the proposed antennas are fabricated on a FR-4 epoxy substrate and show a minimum level of cross-polarization radiations.


Sign in / Sign up

Export Citation Format

Share Document