A ±2A/15A Current Sensor with 1.4 μA Supply Current and ±0.35%/0.6% Gain Error From −40 to 85°C using an Analog Temperature-Compensation Scheme

Author(s):  
Roger Zamparette ◽  
Kofi Makinwa
2010 ◽  
Vol 437 ◽  
pp. 314-318 ◽  
Author(s):  
Nikolay I. Starostin ◽  
Maksim V. Ryabko ◽  
Yurii K. Chamorovskii ◽  
Vladimir P. Gubin ◽  
Aleksandr I. Sazonov ◽  
...  

The interferometric electric current fiber-optic sensor for application in industry is presented. The modified spun fiber is used for sensitive fiber coil of sensor. The sensor has accuracy of 0.5% at temperature range from -40°C to 60°C without necessity of additional temperature compensation. The range of measured current is 15 – 250 kA. A frequency band is 0 – 5000 Hz and a nonlinearity of a sensor output is ±0.15%.


Author(s):  
Sung-Chang Lee ◽  
George W. Tyndall ◽  
Mike Suk

Flying clearance distribution with thermo-mechanical actuation is characterized. Especially, what factors contributing to variation of flying clearance are identified based on thermo-mechanical actuation profiles taken from burn-in process of hard disk drives and Gage R&R test of touch down repeatability. In addition, the effect of static temperature compensation scheme on flying clearance distribution is investigated and disadvantages of static adaptation to temperature change are identified. In order to avoid catastrophic early HDI failures due to poor static temperature compensation, we need to dynamically adjust flying clearance whenever environmental change is detected. Otherwise we need to utilize individual temperature sensitivity values of each flying head to adjust thermo-mechanical actuation amount accordingly with temperature change.


2015 ◽  
Vol 16 (12) ◽  
pp. 8306-8313 ◽  
Author(s):  
Myung-Hwan Ku ◽  
Ju-Gyeong Park ◽  
Guee-Soo Cha ◽  
Dong-Hui Kim ◽  
Jong-Sik Choi

Sign in / Sign up

Export Citation Format

Share Document