scholarly journals Methods to Increase the Contrast of the Image with Preserving the Visual Quality

2021 ◽  
Vol 6 (2) ◽  
pp. 140-145
Author(s):  
Mykola Maksymiv ◽  
◽  
Taras Rak

Contrast enhancement is a technique for increasing the contrast of an image to obtain better image quality. As many existing contrast enhancement algorithms typically add too much contrast to an image, maintaining visual quality should be considered as a part of enhancing image contrast. This paper focuses on a contrast enhancement method that is based on histogram transformations to improve contrast and uses image quality assessment to automatically select the optimal target histogram. Improvements in contrast and preservation of visual quality are taken into account in the target histogram, so this method avoids the problem of excessive increase in contrast. In the proposed method, the optimal target histogram is the weighted sum of the original histogram, homogeneous histogram and Gaussian histogram. Structural and statistical metrics of “naturalness of the image” are used to determine the weights of the corresponding histograms. Contrast images are obtained by matching the optimal target histogram. Experiments show that the proposed method gives better results compared to other existing algorithms for increasing contrast based on the transformation of histograms.

2020 ◽  
Vol 64 (1) ◽  
pp. 10502-1-10502-5
Author(s):  
Sung-Ho Bae ◽  
Seong-Bae Park

Abstract Mean squared error (MSE) has long been the most useful objective image quality assessment (IQA) metric due to its mathematical tractability and computational simplicity, although it has shown poor correlations with the perceived visual quality for distorted images. Contrary to the MSE, recent IQA methods are more closely related with measured visual quality. However, their applications are somewhat limited due to their heavy computational costs and inapplicability in optimization process. In order to develop a better IQA method that will be closer to the perceived visual quality, the authors aimed to incorporate simple yet powerful linear features into the form of MSE while retaining the advantages of computational simplicity and desirable mathematical properties of MSE. Through comprehensive experiments, the authors found that Difference of Gaussians (DoG) kernel significantly improves the prediction performance while keeping the aforementioned advantages in the form of MSE. The proposed method performs better as the DoG filtering well approximates the behaviors of neural response functions in the visual cortex of the human visual system, thus extracting perceptually important features. At the same time, it holds the computational simplicity and mathematical properties of MSE since DoG is a very simple linear kernel. Their extensive experiments showed that the proposed method provides competitive prediction performance to the recent IQA methods with a significantly lower computational complexity.


Author(s):  
Ayub Shokrollahi ◽  
Ahmad Mahmoudi-Aznaveh ◽  
Babak Mazloom-Nezhad Maybodi

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Men ◽  
Vlad Hosu ◽  
Hanhe Lin ◽  
Andrés Bruhn ◽  
Dietmar Saupe

Abstract Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user cannot be fully deduced from such simple measures. Hence, we conducted a subjective quality assessment crowdscouring study for the interpolated frames provided by one of the optical flow benchmarks, the Middlebury benchmark. It contains interpolated frames from 155 methods applied to each of 8 contents. For this purpose, we collected forced-choice paired comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assessment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed absolute quality scale values according to Thurstone’s model. As a result, we obtained a re-ranking of the 155 participating algorithms w.r.t. the visual quality of the interpolated frames. This re-ranking not only shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks, the results also provide the ground truth for designing novel image quality assessment (IQA) methods dedicated to perceptual quality of interpolated images. As a first step, we proposed such a new full-reference method, called WAE-IQA, which weights the local differences between an interpolated image and its ground truth.


2011 ◽  
Vol 4 (4) ◽  
pp. 107-108
Author(s):  
Deepa Maria Thomas ◽  
◽  
S. John Livingston

2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


Sign in / Sign up

Export Citation Format

Share Document