scholarly journals ANN-Based Short-Term Wastewater Flow Prediction for Better WWTP Control

2010 ◽  
Vol 4 (2) ◽  
pp. 159-162
Author(s):  
Leslaw Plonka ◽  
◽  
Korneliusz Miksch ◽  

This paper presents an approach to predict the amount of the wastewater which enters wastewater treatment plant, using artificial neural network. The method presented can be used to give short-term predictions of wastewater inflow-rate. The described neural network model uses a very tiny set of data commonly collected by WWTP control systems.

2016 ◽  
Vol 2 (11) ◽  
pp. 555-567 ◽  
Author(s):  
Samaneh Khademikia ◽  
Ali Haghizadeh ◽  
Hatam Godini ◽  
Ghodratollah Shams Khorramabadi

In this study a hybrid estimation model ANN-COA developed to provide an accurate prediction of a Wastewater Treatment Plant (WWTP). An effective strategy for detection of some output parameters tested on a hardware setup in WWTP. This model is designed utilizing Artificial Neural Network (ANN) and Cuckoo Optimization Algorithm (COA) to improve model performances; which is trained by a historical set of data collected during a 6 months operation. ANN-COA based on the difference between the measured and simulated values, allowed a quick revealing of the faults. The method could obtain the fault detection and used in solving continuous and discrete optimization problems, successfully. After constructing and modelling the method, selected performance indices including coefficient of Regression, Mean-Square Error, Root-Mean-Square Error and Aggregated Measure used to compare the obtained results. This analysis revealed that the hybrid ANN-COA model offers a higher degree of accuracy for predicting and control the WWTP.


2020 ◽  
Vol 12 (16) ◽  
pp. 6386 ◽  
Author(s):  
Farzin Golzar ◽  
David Nilsson ◽  
Viktoria Martin

Wastewater contains considerable amounts of thermal energy. Heat recovery from wastewater in buildings could supply cities with an additional source of renewable energy. However, variations in wastewater temperature influence the performance of the wastewater treatment plant. Thus, the treatment is negatively affected by heat recovery upstream of the plant. Therefore, it is necessary to develop more accurate models of the wastewater temperature variations. In this work, a computational model based on artificial neural network (ANN) is proposed to calculate wastewater treatment plant influent temperature concerning ambient temperature, building effluent temperature and flowrate, stormwater flowrate, infiltration flowrate, the hour of day, and the day of year. Historical data related to the Stockholm wastewater system are implemented in MATLAB software to drive the model. The comparison of calculated and observed data indicated a negligible error. The main advantage of this ANN model is that it only uses historical data commonly recorded, without any requirements of field measurements for intricate heat transfer models. Moreover, Monte Carlo sensitivity analysis determined the most influential parameters during different seasons of the year. Finally, it was shown that installing heat exchangers in 40% of buildings would reduce 203 GWh year−1 heat loss in the sewage network. However, heat demand in WWTP would be increased by 0.71 GWh year−1, and the district heating company would recover 176 GWh year−1 less heat from treated water.


Sign in / Sign up

Export Citation Format

Share Document