scholarly journals Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 595 ◽  
Author(s):  
Pharunyou Chanthorn ◽  
Grienggrai Rajchakit ◽  
Sriraman Ramalingam ◽  
Chee Peng Lim ◽  
Raja Ramachandran

We study the robust dissipativity issue with respect to the Hopfield-type of complex-valued neural network (HTCVNN) models incorporated with time-varying delays and linear fractional uncertainties. To avoid the computational issues in the complex domain, we divide the original complex-valued system into two real-valued systems. We devise an appropriate Lyapunov-Krasovskii functional (LKF) equipped with general integral terms to facilitate the analysis. By exploiting the multiple integral inequality method, the sufficient conditions for the dissipativity of HTCVNN models are obtained via the linear matrix inequalities (LMIs). The MATLAB software package is used to solve the LMIs effectively. We devise a number of numerical models and their empirical results positively ascertain the obtained results.

2021 ◽  
Vol 8 (4) ◽  
pp. 842-854
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

In this article, we investigate the problem of finite-time passivity for the complex-valued neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions relevant to the finite-time passivity of CVNNs are provided; then the suitable control inputs are designed to guarantee the class of CVNNs are finite-time passive. In the meantime, some sufficient conditions of linear matrix inequalities (LMIs) are derived by using inequalities techniques and Lyapunov stability theory. Finally, a numerical example is presented to illustrate the usefulness of the theoretical results.


Author(s):  
Grienggrai Rajchakit ◽  
Ramalingam Sriraman ◽  
Rajendran Samidurai

Abstract This article discusses the dissipativity analysis of stochastic generalized neural network (NN) models with Markovian jump parameters and time-varying delays. In practical applications, most of the systems are subject to stochastic perturbations. As such, this study takes a class of stochastic NN models into account. To undertake this problem, we first construct an appropriate Lyapunov–Krasovskii functional with more system information. Then, by employing effective integral inequalities, we derive several dissipativity and stability criteria in the form of linear matrix inequalities that can be checked by the MATLAB LMI toolbox. Finally, we also present numerical examples to validate the usefulness of the results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
E. J. Cha

This paper deals with the problem of stability analysis for generalized neural networks with time-varying delays. With a suitable Lyapunov-Krasovskii functional (LKF) and Wirtinger-based integral inequality, sufficient conditions for guaranteeing the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). By applying the proposed methods to two numerical examples which have been utilized in many works for checking the conservatism of stability criteria, it is shown that the obtained results are significantly improved comparing with the previous ones published in other literature.


2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
C. Emharuethai ◽  
P. Niamsup

H∞control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger's inequalities and some useful integral inequality.H∞controller is designed via memoryless state feedback control and new sufficient conditions for the existence of theH∞state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Sirada Pinjai ◽  
Kanit Mukdasai

We investigate the problem of robust exponential stability for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Based on the combination of descriptor model transformation, decomposition technique of coefficient matrix, and utilization of zero equation and new Lyapunov functional, sufficient conditions for robust exponential stability are obtained and formulated in terms of linear matrix inequalities (LMIs). The new stability conditions are less conservative and more general than some existing results.


Author(s):  
Shun Ito ◽  
Kaoru Ohara ◽  
Yoshikatsu Hoshi ◽  
Hidetoshi Oya ◽  
Shunya Nagai

This paper deals with a design problem of an adaptive gain robust controller which achieves consensus for multi-agent system (MAS) with uncertainties. In the proposed controller design approach, the relative position between the leader and followers are considered explicitly, and the proposed adaptive gain robust controller consisting of fixed gains and variable ones tuned by time-varying adjustable parameters can reduce the effect of uncertainties. In this paper, we show that sufficient conditions for the existence of the proposed adaptive gain robust controller are reduced to solvability of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed robust formation control system is verified by simple numerical simulations. A main result of this study is that the proposed adaptive gain robust controller can achieve consensus and formation control giving consideration to relative distance in spite of uncertainties.


2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


Sign in / Sign up

Export Citation Format

Share Document