Wind Turbine Gearbox Fault Diagnosis using SAE-BP Transfer Neural Network

2019 ◽  
Vol 15 (9) ◽  
pp. 2504
Author(s):  
Wang Yu ◽  
Yang Shuai ◽  
Sánchez RenéVinicio
2014 ◽  
Vol 978 ◽  
pp. 78-83
Author(s):  
Qiang Lan ◽  
Peng Da Zhao ◽  
Man Li Wang

The gearbox is an important module of wind turbine. In order to diagnosis the fault of wind turbine gearbox, a method based on the improved neural network is proposed. According to the characteristics of the wind turbine gearbox, several vibration sensors are set in the gearbox, so as to acquire the feature vector of gearbox. After training, the improved neural network is verified with some test samples. The result proved that the method is suitable for fault diagnosis in gearbox of wind turbine.. Keywords: wind turbine gearbox, fault diagnosis, particle swam, neural network.


2018 ◽  
Vol 37 (4) ◽  
pp. 977-986 ◽  
Author(s):  
Chen Huitao ◽  
Jing Shuangxi ◽  
Wang Xianhui ◽  
Wang Zhiyang

In order to monitor the wind turbine gearbox running state effectively, a fault diagnosis method of wind turbine gearbox is put forward based on wavelet neural network. Taking a 1.5 MW wind turbine gearbox as the target of study, the frequency spectrum of vibration signal and the fault mechanism of driving part are analyzed, and the eigenvalues of the frequency domain are extracted. A wavelet neural network model for fault diagnosis of wind turbine gearbox is established, and wavelet neural network is trained by using different feature vectors of fault types. The relationship between fault component and vibration signal is identified, and the vibration fault of wind turbine gearbox is predicted and diagnosed by network model. The analysis results show that the method can diagnose fault and fault pattern recognition of wind turbine gearbox very well.


Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042005
Author(s):  
Xueyi Liu ◽  
Junhao Dong ◽  
Guangyu Tu

Abstract Fan, as the most commonly used mechanical equipment, is widely used. In order to solve the problem of fan bearing fault diagnosis, this paper analyzes the main factors affecting fan spindle speed and power generation in operation. The input and output parameters of the performance prediction model are determined. The performance prediction model of wind turbine is established by using generalized regression neural network, and the smoothing factor of GRNN is optimized by comparing the prediction accuracy of the model. Based on this model, the sliding data window method is used to calculate the residual evaluation index of wind turbine speed and power in real time. When the evaluation index continuously exceeds the pre-set threshold, the abnormal state of wind turbine can be judged. In order to obtain wind turbine blades with better aerodynamic performance, a blade aerodynamic performance optimization method based on quantum heredity is proposed. The B é zier curve control point is used as the design variable to represent the continuous chord length and torsion angle distribution of the blade, the blade shape optimization model aiming at the maximum power is established, and the quantum genetic algorithm is used to optimize the chord length and torsion angle of the blade under different constraints. The optimization results of quantum genetic algorithm and classical genetic algorithm are compared and analyzed. Under the same parameters and boundary conditions, the proposed blade aerodynamic optimization method based on quantum genetic optimization is better than the classical genetic optimization method, and can obtain better blade aerodynamic shape and higher wind energy capture efficiency. This method makes up for the shortcomings of traditional fault diagnosis methods, improves the recognition rate of fault types and the accuracy of fault diagnosis, and the diagnosis effect is good.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


Sign in / Sign up

Export Citation Format

Share Document