scholarly journals A Fault Diagnosis Algorithm for Wind Turbine Blades Based on BP Neural Network

2021 ◽  
Vol 1043 (2) ◽  
pp. 022032
Author(s):  
Jun-Xi Bi ◽  
Wen-Ze Fan ◽  
Ying Wang ◽  
Jun Ren ◽  
Hai-Bin Li
2020 ◽  
Vol 39 (6) ◽  
pp. 9027-9035
Author(s):  
Xi Chen

During the COVID-19 pandemic, the maintenance of the wind turbine is unable to be processed due to the problem of personnel. This paper presents two neural network models: BP neural network and LSTM neural network combined with Particle Swarm Optimization (PSO) algorithm to realize obstacle maintenance detection for wind turbine. Aiming at the problem of gradient vanishing existing in the traditional regression neural network, a fault diagnosis model of wind turbine rolling bearing is proposed by using long-term and short-term memory neural network. Through the analysis of an example, it is verified that the diagnosis results of this method are consistent with the actual fault diagnosis results of wind turbine rolling bearing and the diagnosis accuracy is high. The results show that the proposed method can effectively diagnose the rolling bearing of wind turbine, and the long-term and short-term memory neural network still has good fault diagnosis performance when the difference of fault characteristics is not obvious, which shows the feasibility and effectiveness of the method.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1889 ◽  
Author(s):  
Xin Liu ◽  
Zheng Liu ◽  
Zhongwei Liang ◽  
Shun-Peng Zhu ◽  
José A. F. O. Correia ◽  
...  

The full-scale static testing of wind turbine blades is an effective means to verify the accuracy and rationality of the blade design, and it is an indispensable part in the blade certification process. In the full-scale static experiments, the strain of the wind turbine blade is related to the applied loads, loading positions, stiffness, deflection, and other factors. At present, researches focus on the analysis of blade failure causes, blade load-bearing capacity, and parameter measurement methods in addition to the correlation analysis between the strain and the applied loads primarily. However, they neglect the loading positions and blade displacements. The correlation among the strain and applied loads, loading positions, displacements, etc. is nonlinear; besides that, the number of design variables is numerous, and thus the calculation and prediction of the blade strain are quite complicated and difficult using traditional numerical methods. Moreover, in full-scale static testing, the number of measuring points and strain gauges are limited, so the test data have insufficient significance to the calibration of the blade design. This paper has performed a study on the new strain prediction method by introducing intelligent algorithms. Back propagation neural network (BPNN) improved by Particle Swarm Optimization (PSO) has significant advantages in dealing with non-linear fitting and multi-input parameters. Models based on BPNN improved by PSO (PSO-BPNN) have better robustness and accuracy. Based on the advantages of the neural network in dealing with complex problems, a strain-predictive PSO-BPNN model for full-scale static experiment of a certain wind turbine blade was established. In addition, the strain values for the unmeasured points were predicted. The accuracy of the PSO-BPNN prediction model was verified by comparing with the BPNN model and the simulation test. Both the applicability and usability of strain-predictive neural network models were verified by comparing the prediction results with simulation outcomes. The comparison results show that PSO-BPNN can be utilized to predict the strain of unmeasured points of wind turbine blades during static testing, and this provides more data for characteristic structural parameters calculation.


2020 ◽  
Vol 14 (1) ◽  
pp. 6430-6442
Author(s):  
Khaled Ziane ◽  
Adrian Ilinca ◽  
Abdullah Khan ◽  
Soraya Zebirate

In modern wind turbine blades industry, fiber-reinforced composites are mostly used for their good mechanical characteristics: high stiffness, low density and long fatigue life. Wind turbine blades are constructed in different structural elements from a variety of composite laminates, often including Unidirectional (UD) material in spars and multiple forms of Multidirectional (MD) in skins and webs.  The purpose of this paper is to identify materials that have appropriate fiber orientations to improve fatigue life. By using Cuckoo Search-based Neural Network (CSNN), we have developed a model to predict fatigue life under tension-tension charges for five composite materials, with different fiber stacking sequences embedded in three types of resin matrices (epoxy, polyester and vinylester), which are all appropriate for the design of wind turbine blades. In the CSNN approach used in this work, the cost function was assessed using the Mean Square Error (MSE) computed as the squared difference between the predicted values and the target values for a number of training set samples, obtained from an experimental fatigue database. The results illustrate that the CSNN can provide accurate fatigue life prediction for different MD/UD composite laminates, under different angles of fiber orientation.


Sign in / Sign up

Export Citation Format

Share Document