Stability and Control of Large-Scale Dynamical Systems

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, with an emphasis on vector Lyapunov function methods and vector dissipativity theory. It examines large-scale continuous-time interconnected dynamical systems and describes thermodynamic modeling of large-scale interconnected systems, along with the use of vector Lyapunov functions to control large-scale dynamical systems. It also discusses finite-time stabilization of large-scale systems via control vector Lyapunov functions, coordination control for multiagent interconnected systems, large-scale impulsive dynamical systems, finite-time stabilization of large-scale impulsive dynamical systems, and hybrid decentralized maximum entropy control for large-scale systems. This chapter provides a brief introduction to large-scale interconnected dynamical systems as well as an overview of the book's structure.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book has described a general stability analysis and control design framework for large-scale dynamical systems, with an emphasis on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. The large-scale dynamical systems are composed of interconnected subsystems whose relationships are often circular, giving rise to feedback interconnections. This leads to nonlinear models that can exhibit rich dynamical behavior, such as multiple equilibria, limit cycles, bifurcations, jump resonance phenomena, and chaos. The book concludes by discussing the potential for applying and extending the results across disciplines, such as economic systems, network systems, computer networks, telecommunication systems, power grid systems, and road, rail, air, and space transportation systems.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter describes sufficient conditions for finite-time stability of nonlinear impulsive dynamical systems. For impulsive dynamical systems, it may be possible to reset the system states to an equilibrium state, in which case finite-time convergence of the system trajectories can be achieved without the requirement of non-Lipschitzian dynamics. Furthermore, due to system resettings, impulsive dynamical systems may exhibit non-uniqueness of solutions in reverse time even when the continuous-time dynamics are Lipschitz continuous. The chapter presents stability results using vector Lyapunov functions wherein finite-time stability of the impulsive system is guaranteed via finite-time stability of a hybrid vector comparison system. These results are used to develop hybrid finite-time stabilizing controllers for impulsive dynamical systems. Decentralized finite-time stabilizers for large-scale impulsive dynamical systems are also constructed. Finally, it gives a numerical example to illustrate the utility of the proposed framework.


2018 ◽  
Vol 36 (4) ◽  
pp. 1133-1148 ◽  
Author(s):  
Songlin Wo ◽  
Xiaoxin Han

AbstractThis paper considers the problem of finite-time robust decentralized control for uncertain continuous-time singular large-scale systems with exogenous disturbances (UCSLSSED). The concept of finite-time robust decentralized stabilization for UCSLSSED is introduced by definition of finite-time stability for uncertain continuous-time large-scale systems with exogenous disturbances. The analyses of finite-time robust bounded and finite-time robust stabilization for UCSLSSED are done. The design approach of finite-time robust decentralized state feedback controller is also given. Finally, an illustrative example is provided to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document