scholarly journals Local convergence analysis of Jarratt-type schemes for solving equations

2019 ◽  
Vol 2019 (1) ◽  
2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


2020 ◽  
pp. 102-109
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The local convergence analysis of iterative methods is important since it demonstrates the degree of diffculty for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples where the convergence criteria are tested are provided. It turns out that in these examples the criteria in the earlier works are not satisfied, so these results cannot be used to solve equations but our results can be used.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The aim of this article is to extend the convergence region of certain multi-step Chebyshev-Halley-type schemes for solving Banach space valued nonlinear equations. In particular, we find an at least as small region as the region of the operator involved containing the iterates. This way the majorant functions are tighter than the ones related to the original region, leading to a finer local as well as a semi-local convergence analysis under the same computational effort. Numerical examples complete this article.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Algorithms ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 65 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
Sandile Motsa

Sign in / Sign up

Export Citation Format

Share Document