scholarly journals Penggunaan UPFC (Unified Power Flow Controller) untuk Perbaikan Kestabilan Sistem Tenaga Listrik yang Terinterkoneksi

Electrician ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 25-32
Author(s):  
Rudy Gianto

Intisari — Makalah ini membahas penggunaan peralatan FACTS (Flexible AC Transmission Systems) untuk meningkatkan atau memperbaiki kestabilan sistem tenaga listrik yang terinterkoneksi. Peralatan FACTS pada umumnya digunakan untuk mengendalikan aliran daya-aktif dan/atau daya-reaktif serta untuk mengontrol besarnya tegangan sistem. Namun demikian, dengan memasang alat kontrol tambahan, peralatan FACTS dapat digunakan untuk meningkatkan redaman elektromekanik dan kestabilan sistem tenaga listrik sebagai fungsi sekundernya. Salah satu peralatan FACTS yang cukup populer saat ini adalah UPFC (Unified Power Flow Controller). UPFC merupakan peralatan FACTS generasi ketiga. Peralatan ini menggabungkan kompensator shunt dan kapasitor seri statik menjadi satu peralatan dengan sistem kendali terpadu. UPFC memiliki kemampuan unik untuk mengendalikan aliran daya listrik dan tegangan secara simultan sehingga memiliki potensi untuk digunakan dalam meningkatkan redaman dan kestabilan sistem. Makalah ini menyelidiki aplikasi dari UPFC pada peningkatan kestabilan sistem tenaga listrik yang terinterkoneksi. Keefektifan dari peralatan tersebut dalam memperbaiki penampilan dinamik dan meningkatkan kestabilan suatu sistem tenaga telah dikonfirmasi melalui hasil-hasil perhitungan nilaieigen dan divalidasi dengan menggunakan simulasi domain-waktu.Kata kunci — FACTS, UPFC, Redaman, Kestabilan, Sistem Tenaga Listrik Abstract — This paper discusses an application of FACTS (Flexible AC Transmission Systems) device in improving the stability of interconnected electric power system. FACTS devices are used primarily for controlling active- and/or reactive-power and also for voltage regulation. However, by employing some supplementary controllers, it can also be used for enhancing system electromechanical damping and stability as its secondary function. One of the most popular FACTS devices is UPFC (Unified Power Flow Controller). UPFC is a third generation of FACTS device. This device combines the shunt compensator and static series capacitor as one device with a unified control system. UPFC has a unique ability in controlling simultaneously system power flow and voltage, and therefore, has a potential to be used for system damping and stability improvement. This paper investigates an application of UPFC in improving the stability of interconnected power system. The effectiveness of the device in enhancing system dynamic performance and stability has been confirmed through eigenvalue calculations and validated using time-domain simulations.Keywords— FACTS, UPFC, Damping, Stability, Electric Power System

Author(s):  
Maamar Benyamina ◽  
Mohamed Bouhamida ◽  
Tayeb Allaoui ◽  
Rachid Taleb ◽  
Mouloud Denai

<p>FACTS (Flexible AC Transmission Systems) technology has now been accepted as a potential solution to the stability problem and load flow. The Unified Power Flow Controller (UPFC) is considered to be the most powerful and versatile among all FACTS devices.  This paper presents the control of a UPFC system using Hinf robust control technique. A simulation study using Matlab/Simulink is presented to the performance of this control strategy and the robustness with respect to variations of the system parameters such as the inductance of the transmission line.</p>


2019 ◽  
Vol 8 (4) ◽  
pp. 11456-11459

Generally, power system faces the problem to transfer power from one system to another system without any fluctuations, with minimal of system losses. To overcome this problems, a flexible ac transmission system is implemented in this paper. In present scenario, facts devices are used to reduce the transmission losses for improvising transmission capacity and also to improve the system capability. Unified Power Flow Controller plays a most prominent role in FACTS controller to improve the system stability. The structure of UPFC is combination of back-back converters with boosting and zigzag transformer. This type of UPFC system consists of high losses due to presence of magnetic properties in this transformer. With this, a transformer-less multilevel inverter based UPFC topology is proposed in this paper. This paper focuses on the modulation of transformerless UPFC with PSO, which controlsfundamental frequency for better controlling of active and reactive power, harmonic minimization, and improvement in efficiency of system by controlling DC link voltage


Author(s):  
Samina. E. Mubeen ◽  
Baseem Khan ◽  
R. K. Nema

<span>This paper utilizes the voltage source model of Unified Power Flow Controller (UPFC) and examines its abilities in mitigating the steady state stability margins of electric power system. It analyzes its behavior for different controls strategies and proposes the most efficient mode of controlling the controller for voltage stability enhancement. A systematic analytical methodology based on the concept of modal analysis of the modified load flow equations is employed to identify the area in a power system which is most prone voltage instability. Also to identify the most effective point of placement for the UPFC, a computer program has been developed using MATLAB. The results of analysis on 14 bus system is presented here as a case study.</span>


2014 ◽  
Vol 622 ◽  
pp. 111-120
Author(s):  
Ananthavel Saraswathi ◽  
S. Sutha

Nowadays in the restructured scenario, the main challenging objective of the modern power system is to avoid blackouts and provide uninterrupted quality power supply with dynamic response during emergency to improve power system security and stability. In this sense the convertible static compensator (CSC) that is the Generalized Inter line power flow controller (GIPFC), can control and optimize power flow in multi-line transmission system instead of controlling single line like its forerunner FACTS (Flexible AC Transmission System) controller. By adding a STATCOM (Static synchronous Shunt Converter) at the front end of the test power system and connecting to the common DC link of the IPFC, it is possible to bring the power factor to higher level and harmonics to the lower level and this arrangement is popularly known as Generalized Inter line power flow controller (GIPFC). In this paper a new concept of GIPFC based on incorporating a voltage source converter with zero sequence injection SPWM technique is presented for reinforcement of system stability margin. A detailed circuit model of modified GIPFC is developed and its performance is validated for a standard test system. Simulation is done using MATLAB Simulink.Index Terms—Convertible static controller, Flexible AC Transmission System (FACTS), Generalized Interline Power Flow Controller (GIPFC),STATCOM, SSSC, Reactive power compensation.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 953 ◽  
Author(s):  
Alberto Duran ◽  
Efrain Ibaceta ◽  
Matias Diaz ◽  
Felix Rojas ◽  
Roberto Cardenas ◽  
...  

The modular multilevel matrix converter has been proposed as a suitable option for high power applications such as flexible AC transmission systems. Among flexible AC transmission systems, the unified power flow controller stands out as the most versatile device. However, the application of the modular multilevel matrix converter has not been thoroughly analyzed for unified power flow controller applications due to the sophisticated control systems that are needed when its ports operate at equal frequencies. In this context, this paper presents a cascaded control structure for a modular multilevel matrix converter based unified power flow controller. The control is implemented in a decoupled reference frame, and it features proportional-integral external controllers and internal proportional multi-resonant controllers. Additionally, the input port of the modular multilevel matrix converter is regulated in grid-feeding mode, and the output port is regulated in grid-forming mode to provide power flow compensation. The effectiveness of the proposed vector control system is demonstrated through simulation studies and experimental validation tests conducted with a 27-cell 5 kW prototype.


Secure and reliable operation of the power system is a critical issue for large, complicated, and interconnected power system networks. Security constraints such as thermal limits of transmission lines and bus voltage limits must be satisfied under any operating point in order to deliver reliable power to the consumers. One of the best alternative solutions of improvement of the security of power system is the use of flexible AC transmission systems (FACTS) devices. FACTS devices can be used to limit the power flow on the overloaded line and to increase the use of alternative paths to improve power transmission capacity. This chapter briefly describes all three categories of FACTS devices, namely shunt controllers (static synchronous compensator, static var compensator, thyristor-controlled reactor, thyristor switched reactor, thyristor switched capacitor), series controllers (static synchronous series compensator, thyristor controlled series capacitor, thyristor-controlled series reactor), and combined series-shunt controllers (unified power flow controller).


Sign in / Sign up

Export Citation Format

Share Document