scholarly journals Effect of liming on the magnesium status of some mineral soils and on the fate of fertilizer magnesium

1981 ◽  
Vol 53 (2) ◽  
pp. 126-137
Author(s):  
Raili Jokinen

Nine mineral soils were incubated in laboratory without lime (Ca0) or limed (Ca1) with calcium carbonate (lab.reag.), and without magnesium fertilizer (Mg0) or fertilized with MgSO4*7H20 (Mg1 = 4 mg/100 g soil Mg). The incubation covered a period of seven weeks in aerobic conditions at constant 20 °C temperature. The relative increase in the effective cation exchange capacity (ECEC) caused by liming seemed to be in coarse mineral soils greater than in clay soils. The differences in pH (CaCl2) values between soil types was not so evident. In seven soils of the nine, liming decreased the 0,01 M CaCl2 extractable magnesium content more than in 1 M KCI or in 1 M neutral ammonium acetate extractable magnesium contents. The limed soils contained ammonium acetate extractable magnesium 2—24 % less than the unlimed soils. The decrease in magnesium content was greatest in acid muddy silt (Littorina soil) and in acid silty clay. Without lime the I M KCI extractable (Al+H) contents of these soils were 6,6 and 2,2 me/100 g soil and pH (CaCl2) 3,9 and 4,5, respectively. In finesand soils liming seemed to increase the magnesium content although not significantly. In limed soils 17—73 %of the fertilizer magnesium was extractable in 0,01 M CaCl2, 67—100 % extractable in 1 M KCI and 57—100 % extractable in 1 M neutral ammonium acetate. The equivalent ratio of exchangeable (1 M ammonium acetate, pH 7) calcium to magnesium in the soils may give pointers to the choice of liming agents, especially in the liming of low cation exchange capacity soils.

1994 ◽  
Vol 74 (4) ◽  
pp. 421-429 ◽  
Author(s):  
Wietse L. Meyer ◽  
Paul A. Arp

Concentrations of Ca, Mg, K, Na, Al, Fe, Mn, and Si extractable with 1 N ammonium chloride (NH4Cl, pH 4.5) and 1 N ammonium acetate (NH4OAc, pH 4.5) were determined for forest soil samples as follows: (1) before drying, and (2) at several time intervals after air-drying (1, 5, 11 and 14 wk). Values for CEC were obtained for the same samples by determining (1) the sum of cations (Al3+, Ca2+, Mg2+, K+, Na+, Fe3+, and Mn2+) in the extracts [denoted [Formula: see text] and [Formula: see text]], and (2) the amount of ammonium retained by the soil samples against water washing [denoted CEC(NH4OAc) and CEC (NH4Cl)]. The soils used in this investigation were taken from four New Brunswick upland forest sites (two sugar maple sites, one mixed wood site, and one spruce site). It was round that (1) extractable Mg, K, Na, and Mn levels were generally not affected by drying, storing, and type of extradant; (2) extractable Al and Fe levels increased immediately after drying; (3) NH4OAc-extracted Al, Fe, and Si exceeded NH4Cl-extracted Al, Fe, and Si; (4) extracted Al and Fe levels tended to drop after 11 wk of storage; (5) small drying effects were also noticed for NH4Cl-extracted Ca; (6) CEC(NH4OAc) and CEC(NH4Cl) values decreased with increasing time of storage; this effect was noticed most for soil samples with high levels of organic matter (Ah, Ahe, Bm, Bf, and Bfh), and was noticed least for sod samples taken from leached horizons (Ae) and subsoil horizons (BC and C); (7) in some cases, storage time increased CEC(NH4OAc) in subsoils; (8) values for [Formula: see text] remained fairly independent or increased slightly with storage time and were closely related with CEC(NH4Cl) values obtained with non-dried samples; (9) values for [Formula: see text] did not relate well with CEC(NH4OAc) and CEC(NH4Cl). Differences for extractable Al were likely due to Al complexation by acetate ions. Drying effects on extractable Al and Fe (and possibly Ca) were likely due to drying-induced fragmentation of soil organic matter. Drying and storage effects on CEC(NH4OAc) and CEC(NH4Cl) were likely due to (1) water-washing and related loss of organic matter, and (2) sensitivity of subsoil minerals to air exposure. Apparent drying and storage effects on CEC were most noted with [Formula: see text] and were least noted with [Formula: see text]. Key words: Cation exchange capacity, ion exchange, drying, storage, ammonium acetate, ammonium chloride extractions


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


Clay Minerals ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 15-24 ◽  
Author(s):  
S. Ramirez ◽  
D. Righi ◽  
S. Petit

AbstractHydrolytic exchange was performed experimentally on four smectitic clays to evaluate the extent of clay alteration induced by this process and the associated ‘auto-transformation’ of H+ clays. Clay samples were Na-saturated and submitted to 10, 50 and 100 wetting-drying (WD) cycles and characterized after treatment using X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity analysis. Evidence for hydrolytic exchange was given by increasing amounts of exchangeable Mg2+ and precipitation of Na soluble salts for samples subjected to 100 WD cycles. Results indicated a decrease in the interlayer charge after 10 WD cycles but no further decrease was observed after 50 and 100 WD cycles. For one sample, XRD data indicated a decrease in the proportion of the smectite phase and a relative increase in the concentration of illite-smectite mixed layers also present in the sample. The results suggested that the reaction induces first a decrease in the layer charge and then a partial dissolution of some smectite layers.


1986 ◽  
Vol 58 (2) ◽  
pp. 47-51
Author(s):  
Raina Niskanen

The number of successive extractions with 1 M KCI needed for adequate estimation of effective cation-exchange capacity was studied with four mineral soils. The effective CEC estimated as the sum of equivalents of exchangeable Ca, Mg, Na, H and Al extracted by four successive treatments ranged from 57 to 206 meq/kg soil. In three cultivated soils, 63—90 % of CEC was saturated by Ca and Mg, in the fourth soil (a deeper layer virgin soil), 60 % of CEC by exchangeable H and Al. By two successive treatments often minutes duration with 50ml of 1 M KCI, the equivalent sum of exchangeable cations extracted amounted to 83—92 % of effective CEC in cultivated soils and 67 % of that in virgin soil; >90 % of exchangeable Ca and Mg, 78—97 % of Al, 48—62 % of H and 28—64 % of Na were extracted. By three successive treatments the equivalent sum amounted to 79—96 % of effective CEC, by the single treatment of 30 minutes duration with 100ml of 1 M KCI to 57—79 %. Two successive extractions with 1 M KCI may be enough for estimation of effective CEC in cultivated mineral soils with high degree of saturation by exchangeable Ca and Mg. Soils with high degree of saturation by exchangeable acidity require three successive extractions.


1986 ◽  
Vol 58 (1) ◽  
pp. 1-7
Author(s):  
Raina Niskanen ◽  
Antti Jaakkola

The efficiency of the soil testing method used in Finland for predicting the effective cation-exchange capacity was studied in a material of 430 topsoil samples. The effective cation-exchange capacity was estimated 1) by summation of exchangeable Ca, Mg and acidity displaced by unbuffered 1 M KCI and 2) by summation of exchangeable Ca, Mg, K and Na displaced by neutral 1 M ammonium acetate and exchangeable acidity. In soil testing, Ca, Mg and K were extracted by acid ammonium acetate and soil pH measured in water-suspension. The estimates of the effective CEC were highly correlated and dependent on the clay and organic carbon content and pH(CaCl2) of the soil, the coefficient of multiple determination being over 80 %. Exchangeable Ca was the dominating cation. The proportion of Ca of the effective CEC was about 80 %. Acid ammonium acetate-extractable Ca together with pH(H2O) explained over 80 % of the variation in the effective CEC. For the whole material consisting of mineral soils with great variations in texture, organic carbon content and properties under evaluation, the regression equation predicting the effective CEC (KCI method) was CEC (mval/kg) = 309—56.8pH(H2O) + 0.085Ca(mg/l). Only 16 % of the estimates of the effective CEC calculated with this regression equation deviated more than 15 % from the measured values.


1984 ◽  
Vol 64 (4) ◽  
pp. 545-554 ◽  
Author(s):  
D. CURTIN ◽  
H. P. W. ROSTAD ◽  
P. M. HUANG

The nature and components of acidity in a group of 20 Saskatchewan soils (pH 5.0–5.8) were investigated. KCl-exchangeable acidity was very low (0.3–2.2 mmol(+)∙kg−1) in all soils. Titratable acidity, determined as the difference between effective CEC and buffered (at pH 8.1) CEC, ranged from 9 to 191 mmol(+)∙kg−1 and constituted about 99% of the total acidity in the soils examined. Titratable acidity was highly correlated with organic carbon (r = 0.83) and with Al extracted using citrate-dithionite-bicarbonate (r = 0.95), potassium pyrophosphate (r = 0.92) and pH 4.8 ammonium acetate (r = 0.79). The combination of organic carbon and citrate-dithionite-bicarbonate-extractable Al accounted for 96% of the variation in titratable acidity. Although lime requirement determined by the Shoemaker-Mc-Lean-Pratt procedure was very highly correlated with titratable acidity (r = 0.98), the data show that the estimated amount of lime to raise soil pH to 6.8 actually exceeded the total (titratable plus exchangeable) acidity in 19 of the 20 soils. Key words: Extractable Al, organic matter, SMP buffer, cation exchange capacity


Sign in / Sign up

Export Citation Format

Share Document